We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A tame dynamical system can be characterized by the cardinality of its enveloping (or Ellis) semigroup. Indeed, this cardinality is that of the power set of the continuum $2^{\mathfrak c}$ if the system is non-tame. The semigroup admits a minimal bilateral ideal and this ideal is a union of isomorphic copies of a group $\mathcal H$, called the structure group. For almost automorphic systems, the cardinality of $\mathcal H$ is at most ${\mathfrak c}$ that of the continuum. We show a partial converse of this which holds for minimal systems for which the Ellis semigroup of their maximal equicontinuous factor acts freely, namely that the cardinality of $\mathcal H$ is $2^{{\mathfrak c}}$ if the proximal relation is not transitive and the subgroup generated by products $\xi \zeta ^{-1}$ of singular points $\xi ,\zeta $ in the maximal equicontinuous factor is not open. This refines the above statement about non-tame Ellis semigroups, as it locates a particular algebraic component of the latter which has such a large cardinality.
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the $\ell $-adic local systems on affine spaces in characteristic $p> 0$ whose trace functions are these exponential sums. The exponential sums here are much more general than we previously were able to consider. As a byproduct, we determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces. We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
This article presents new rationality results for the ratios of critical values of Rankin–Selberg L-functions of $\mathrm {GL}(n) \times \mathrm {GL}(n')$ over a totally imaginary field $F.$ The proof is based on a cohomological interpretation of Langlands’s contant term theorem via rank-one Eisenstein cohomology for the group $\mathrm {GL}(N)/F,$ where $N = n+n'.$ The internal structure of the totally imaginary base field has a delicate effect on the Galois equivariance properties of the critical values.
Given a number field K, we show that certain K-integral representations of closed surface groups can be deformed to being Zariski dense while preserving many useful properties of the original representation. This generalises a method due to Long and Thistlethwaite who used it to show that thin surface groups in $\textrm{SL}(2k+1,\mathbf{Z})$ exist for all k.
We state and prove an extension of the global Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture to the case of some Eisenstein series on unitary groups $U_n\times U_{n+1}$. Our theorems are based on a comparison of the Jacquet-Rallis trace formulas. A new point is the expression of some interesting spectral contributions in these formulas in terms of integrals of relative characters. As an application of our main theorems, we prove the global Gan-Gross-Prasad and the Ichino-Ikeda conjecture for Bessel periods of unitary groups.
We introduce an explicit family of representations of the double affine Hecke algebra $\mathbb {H}$ acting on spaces of quasi-polynomials, defined in terms of truncated Demazure-Lusztig type operators. We show that these quasi-polynomial representations provide concrete realisations of a natural family of cyclic Y-parabolically induced $\mathbb {H}$-representations. We recover Cherednik’s well-known polynomial representation as a special case.
The quasi-polynomial representation gives rise to a family of commuting operators acting on spaces of quasi-polynomials. These generalize the Cherednik operators, which are fundamental in the study of Macdonald polynomials. We provide a detailed study of their joint eigenfunctions, which may be regarded as quasi-polynomial, multi-parametric generalisations of nonsymmetric Macdonald polynomials. We also introduce generalizations of symmetric Macdonald polynomials, which are invariant under a multi-parametric generalization of the standard Weyl group action.
We connect our results to the representation theory of metaplectic covers of reductive groups over non-archimedean local fields. We introduce root system generalizations of the metaplectic polynomials from our previous work by taking a suitable restriction and reparametrization of the quasi-polynomial generalizations of Macdonald polynomials. We show that metaplectic Iwahori-Whittaker functions can be recovered by taking the Whittaker limit of these metaplectic polynomials.
Let F be a non-archimedean local field of characteristic not equal to 2. In this article, we prove the local converse theorem for quasi-split $\mathrm {O}_{2n}(F)$ and $\mathrm {SO}_{2n}(F)$, via the description of the local theta correspondence between $\mathrm {O}_{2n}(F)$ and $\mathrm {Sp}_{2n}(F)$. More precisely, as a main step, we explicitly describe the precise behavior of the $\gamma $-factors under the correspondence. Furthermore, we apply our results to prove the weak rigidity theorems for irreducible generic cuspidal automorphic representations of $\mathrm {O}_{2n}(\mathbb {A})$ and $\mathrm {SO}_{2n}(\mathbb {A})$, respectively, where $\mathbb {A}$ is a ring of adele of a global number field L.
Scalar relative invariants play an important role in the theory of group actions on a manifold as their zero sets are invariant hypersurfaces. Relative invariants are central in many applications, where they often are treated locally since an invariant hypersurface may not be a locus of a single function. Our aim is to establish a global theory of relative invariants.
For a Lie algebra ${\mathfrak g}$ of holomorphic vector fields on a complex manifold M, any holomorphic ${\mathfrak g}$-invariant hypersurface is given in terms of a ${\mathfrak g}$-invariant divisor. This generalizes the classical notion of scalar relative ${\mathfrak g}$-invariant. Any ${\mathfrak g}$-invariant divisor gives rise to a ${\mathfrak g}$-equivariant line bundle, and a large part of this paper is therefore devoted to the investigation of the group $\mathrm {Pic}_{\mathfrak g}(M)$ of ${\mathfrak g}$-equivariant line bundles. We give a cohomological description of $\mathrm {Pic}_{\mathfrak g}(M)$ in terms of a double complex interpolating the Chevalley-Eilenberg complex for ${\mathfrak g}$ with the Čech complex of the sheaf of holomorphic functions on M.
We also obtain results about polynomial divisors on affine bundles and jet bundles. This has applications to the theory of differential invariants. Those were actively studied in relation to invariant differential equations, but the description of multipliers (or weights) of relative differential invariants was an open problem. We derive a characterization of them with our general theory. Examples, including projective geometry of curves and second-order ODEs, not only illustrate the developed machinery but also give another approach and rigorously justify some classical computations. At the end, we briefly discuss generalizations of this theory.
We prove that every locally compact second countable group G arises as the outer automorphism group $\operatorname{Out} M$ of a II1 factor, which was so far only known for totally disconnected groups, compact groups, and a few isolated examples. We obtain this result by proving that every locally compact second countable group is a centralizer group, a class of Polish groups that arise naturally in ergodic theory and that may all be realized as $\operatorname{Out} M$.
A Schur multiplier is a linear map on matrices which acts on its entries by multiplication with some function, called the symbol. We consider idempotent Schur multipliers, whose symbols are indicator functions of smooth Euclidean domains. Given $1<p\neq 2<\infty $, we provide a local characterization (under some mild transversality condition) for the boundedness on Schatten p-classes of Schur idempotents in terms of a lax notion of boundary flatness. We prove in particular that all Schur idempotents are modeled on a single fundamental example: the triangular projection. As an application, we fully characterize the local $L_p$-boundedness of smooth Fourier idempotents on connected Lie groups. They are all modeled on one of three fundamental examples: the classical Hilbert transform and two new examples of Hilbert transforms that we call affine and projective. Our results in this paper are vast noncommutative generalizations of Fefferman’s celebrated ball multiplier theorem. They confirm the intuition that Schur multipliers share profound similarities with Euclidean Fourier multipliers – even in the lack of a Fourier transform connection – and complete, for Lie groups, a longstanding search of Fourier $L_p$-idempotents.
Let F be a non-archimedean locally compact field of residual characteristic p, let $G=\operatorname {GL}_{r}(F)$ and let $\widetilde {G}$ be an n-fold metaplectic cover of G with $\operatorname {gcd}(n,p)=1$. We study the category $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ of complex smooth representations of $\widetilde {G}$ having inertial equivalence class $\mathfrak {s}=(\widetilde {M},\mathcal {O})$, which is a block of the category $\operatorname {Rep}(\widetilde {G})$, following the ‘type theoretical’ strategy of Bushnell-Kutzko.
Precisely, first we construct a ‘maximal simple type’ $(\widetilde {J_{M}},\widetilde {\lambda }_{M})$ of $\widetilde {M}$ as an $\mathfrak {s}_{M}$-type, where $\mathfrak {s}_{M}=(\widetilde {M},\mathcal {O})$ is the related cuspidal inertial equivalence class of $\widetilde {M}$. Along the way, we prove the folklore conjecture that every cuspidal representation of $\widetilde {M}$ could be constructed explicitly by a compact induction. Secondly, we construct ‘simple types’ $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$ and prove that each of them is an $\mathfrak {s}$-type of a certain block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$. When $\widetilde {G}$ is either a Kazhdan-Patterson cover or Savin’s cover, the corresponding blocks turn out to be those containing discrete series representations of $\widetilde {G}$. Finally, for a simple type $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$, we describe the related Hecke algebra $\mathcal {H}(\widetilde {G},\widetilde {\lambda })$, which turns out to be not far from an affine Hecke algebra of type A, and is exactly so if $\widetilde {G}$ is one of the two special covers mentioned above.
We leave the construction of a ‘semi-simple type’ related to a general block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ to a future phase of the work.
Arthur packets have been defined for pure real forms of symplectic and special orthogonal groups following two different approaches. The first approach, due to Arthur, Moeglin, and Renard uses harmonic analysis. The second approach, due to Adams, Barbasch, and Vogan uses microlocal geometry. We prove that the two approaches produce essentially equivalent Arthur packets. This extends previous work of the authors and J. Adams for the quasisplit real forms.
This paper studies reversibility and transitivity of semigroups acting on homogeneous spaces. Properties of the reversor set of a subsemigroup acting on homogeneous spaces are presented. Let G be a topological group and L a subgroup of G. Assume that S is a subsemigroup of G with nonempty interior. It is presented a study of the reversibility of the S-action on $G/L$ in terms of the actions of S and L on homogeneous spaces of G. The results relate the reversibility and the transitivity of S in $G/L$ with the minimality of the action of L on homogeneous spaces of G. In addition, sufficient conditions for S to be right reversible in G if S is reversible in $G/L$ are presented.
Let ${ F}/{ F}_0$ be a quadratic extension of non-Archimedean locally compact fields of residual characteristic $p\neq 2$ with Galois automorphism $\sigma $, and let R be an algebraically closed field of characteristic $\ell \notin \{0,p\}$. We reduce the classification of $\operatorname {GL}_n({ F}_0)$-distinguished cuspidal R-representations of $\operatorname {GL}_n({ F})$ to the level $0$ setting. Moreover, under a parity condition, we give necessary conditions for a $\sigma $-self-dual cuspidal R-representation to be distinguished. Finally, we classify the distinguished cuspidal ${\overline {\mathbb {F}}_{\ell }}$-representations of $\operatorname {GL}_n({ F})$ having a distinguished cuspidal lift to ${\overline {\mathbb {Q}}_\ell }$.
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, based on the construction of small permutative categories of compact open bisections. This allows us to analyse homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with comparison.
Let G be the Lie group ${\mathbb{R}}^2\rtimes {\mathbb{R}}^+$ endowed with the Riemannian symmetric space structure. Take a distinguished basis $X_0,\, X_1,\,X_2$ of left-invariant vector fields of the Lie algebra of G, and consider the Laplacian $\Delta=-\sum_{i=0}^2X_i^2$ and the first-order Riesz transforms $\mathcal R_i=X_i\Delta^{-1/2}$, $i=0,1,2$. We first show that the atomic Hardy space H1 in G introduced by the authors in a previous paper does not admit a characterization in terms of the Riesz transforms $\mathcal R_i$. It is also proved that two of these Riesz transforms are bounded from H1 to H1.
We extend a comparison theorem of Anandavardhanan–Borisagar between the quotient of the induction of a mod $p$ character by the image of an Iwahori–Hecke operator and compact induction of a weight to the case of the trivial character. This involves studying the corresponding non-commutative Iwahori–Hecke algebra. We use this to give an Iwahori theoretic reformulation of the (semi-simple) mod $p$ local Langlands correspondence discovered by Breuil and reformulated functorially by Colmez. This version of the correspondence is expected to have applications to computing the mod $p$ reductions of semi-stable Galois representations.
In this work, we develop an integral representation for the partial L-function of a pair $\pi \times \tau $ of genuine irreducible cuspidal automorphic representations, $\pi $ of the m-fold covering of Matsumoto of the symplectic group $\operatorname {\mathrm {Sp}}_{2n}$ and $\tau $ of a certain covering group of $\operatorname {\mathrm {GL}}_k$, with arbitrary m, n and k. Our construction is based on the recent extension by Cai, Friedberg, Ginzburg and the author, of the classical doubling method of Piatetski-Shapiro and Rallis, from rank-$1$ twists to arbitrary rank twists. We prove a basic global identity for the integral and compute the local integrals with unramified data. Our global results are subject to certain conjectures, but when $k=1$ they are unconditional for all m. One possible future application of this work will be a Shimura-type lift of representations from covering groups to general linear groups. In a recent work, we used the present results in order to provide an analytic definition of local factors for representations of the m-fold covering of $\operatorname {\mathrm {Sp}}_{2n}$.
Let X be a smooth, projective and geometrically connected curve defined over a finite field ${\mathbb {F}}_q$ of characteristic p different from $2$ and $S\subseteq X$ a subset of closed points. Let $\overline {X}$ and $\overline {S}$ be their base changes to an algebraic closure of ${\mathbb {F}}_q$. We study the number of $\ell $-adic local systems $(\ell \neq p)$ in rank $2$ over $\overline {X}-\overline {S}$ with all possible prescribed tame local monodromies fixed by k-fold iterated action of Frobenius endomorphism for every $k\geq 1$. In all cases, we confirm conjectures of Deligne predicting that these numbers behave as if they were obtained from a Lefschetz fixed point formula. In fact, our counting results are expressed in terms of the numbers of some Higgs bundles.
We consider conjugacy classes in a locally compact group G that support finite G-invariant measures. If G is a property (M) extension of an abelian group, in particular, if G is a metabelian group, then any such conjugacy class is relatively compact. As an application, centralisers of lattices in such groups have bounded conjugacy classes. We use the same techniques to obtain results in the case of totally disconnected, locally compact groups.