We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a full right-Hilbert $\mathrm {C}^{*}$-module $\mathbf {X}$ over a $\mathrm {C}^{*}$-algebra A, the set $\mathbb {K}_{A}(\mathbf {X})$ of A-compact operators on $\mathbf {X}$ is the (up to isomorphism) unique $\mathrm {C}^{*}$-algebra that is strongly Morita equivalent to the coefficient algebra A via $\mathbf {X}$. As a bimodule, $\mathbb {K}_{A}(\mathbf {X})$ can also be thought of as the balanced tensor product $\mathbf {X}\otimes _{A} \mathbf {X}^{\mathrm {op}}$, and so the latter naturally becomes a $\mathrm {C}^{*}$-algebra. We generalize both of these facts to the world of Fell bundles over groupoids: Suppose $\mathscr {B}$ is a Fell bundle over a groupoid $\mathcal {H}$ and $\mathscr {M}$ is an upper semi-continuous Banach bundle over a principal $\mathcal {H}$-space X. If $\mathscr {M}$ carries a right-action of $\mathscr {B}$ and a sufficiently nice $\mathscr {B}$-valued inner product, then its imprimitivity Fell bundle$\mathbb {K}_{\mathscr {B}}(\mathscr {M})=\mathscr {M}\otimes _{\mathscr {B}} \mathscr {M}^{\mathrm {op}}$ is a Fell bundle over the imprimitivity groupoid of X, and it is the unique Fell bundle that is equivalent to $\mathscr {B}$ via $\mathscr {M}$. We show that $\mathbb {K}_{\mathscr {B}}(\mathscr {M})$ generalizes the “higher order” compact operators of Abadie–Ferraro in the case of saturated bundles over groups, and that the theorem recovers results such as Kumjian’s Stabilization trick.
Given a Polish group G, let $E(G)$ be the right coset equivalence relation $G^\omega /c(G)$, where $c(G)$ is the group of all convergent sequences in G. We first established two results:
(1) Let $G,H$ be two Polish groups. If H is TSI but G is not, then $E(G)\not \le _BE(H)$.
(2) Let G be a Polish group. Then the following are equivalent: (a) G is TSI non-archimedean; (b)$E(G)\leq _B E_0^\omega $; and (c) $E(G)\leq _B {\mathbb {R}}^\omega /c_0$. In particular, $E(G)\sim _B E_0^\omega $ iff G is TSI uncountable non-archimedean.
A critical theorem presented in this article is as follows: Let G be a TSI Polish group, and let H be a closed subgroup of the product of a sequence of TSI strongly NSS Polish groups. If $E(G)\le _BE(H)$, then there exists a continuous homomorphism $S:G_0\rightarrow H$ such that $\ker (S)$ is non-archimedean, where $G_0$ is the connected component of the identity of G. The converse holds if G is connected, $S(G)$ is closed in H, and the interval $[0,1]$ can be embedded into H.
As its applications, we prove several Rigid theorems for TSI Lie groups, locally compact Polish groups, separable Banach spaces, and separable Fréchet spaces, respectively.
In this paper, we define compact open subgroups of quasi-split even unitary groups for each even non-negative integer and establish the theory of local newforms for irreducible tempered generic representations with a certain condition on the central characters. To do this, we use the local Gan–Gross–Prasad conjecture, the local Rankin–Selberg integrals and the local theta correspondence.
We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion.
In this paper, we study the twisted Ruelle zeta function associated with the geodesic flow of a compact, hyperbolic, odd-dimensional manifold X. The twisted Ruelle zeta function is associated with an acyclic representation $\chi \colon \pi _{1}(X) \rightarrow \operatorname {\mathrm {GL}}_{n}(\mathbb {C})$, which is close enough to an acyclic, unitary representation. In this case, the twisted Ruelle zeta function is regular at zero and equals the square of the refined analytic torsion, as it is introduced by Braverman and Kappeler in [6], multiplied by an exponential, which involves the eta invariant of the even part of the odd-signature operator, associated with $\chi $.
We investigate properties of closed approximate subgroups of locally compact groups, with a particular interest for approximate lattices (i.e., those approximate subgroups that are discrete and have finite co-volume).
We prove an approximate subgroup version of Cartan’s closed-subgroup theorem and study some applications. We give a structure theorem for closed approximate subgroups of amenable groups in the spirit of the Breuillard–Green–Tao theorem. We then prove two results concerning approximate lattices: we extend to amenable groups a structure theorem for mathematical quasi-crystals due to Meyer; we prove results concerning intersections of radicals of Lie groups and discrete approximate subgroups generalising theorems due to Auslander, Bieberbach and Mostow. As an underlying theme, we exploit the notion of good models of approximate subgroups that stems from the work of Hrushovski, and Breuillard, Green and Tao. We show how one can draw information about a given approximate subgroup from a good model, when it exists.
Consider a possibly unsaturated Fell bundle $\mathcal {A}\to G$ over a locally compact, possibly non-Hausdorff, groupoid G. We list four notions of continuity of representations of $\mathit {C_c}(G;\mathcal {A})$ on a Hilbert space and prove their equivalence. This allows us to define the full $\mathit {C}^*$-algebra of the Fell bundle in different ways.
In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.
Let $(\tau , V_{\tau })$ be a finite dimensional representation of a maximal compact subgroup K of a connected non-compact semisimple Lie group G, and let $\Gamma $ be a uniform torsion-free lattice in G. We obtain an infinitesimal version of the celebrated Matsushima–Murakami formula, which relates the dimension of the space of automorphic forms associated to $\tau $ and multiplicities of irreducible $\tau ^\vee $-spherical spectra in $L^2(\Gamma \backslash G)$. This result gives a promising tool to study the joint spectra of all central operators on the homogenous bundle associated to the locally symmetric space and hence its infinitesimal $\tau $-isospectrality. Along with this, we prove that the almost equality of $\tau $-spherical spectra of two lattices assures the equality of their $\tau $-spherical spectra.
Without using the $p$-adic Langlands correspondence, we prove that for many finite-length smooth representations of $\mathrm {GL}_2(\mathbf {Q}_p)$ on $p$-torsion modules the $\mathrm {GL}_2(\mathbf {Q}_p)$-linear morphisms coincide with the morphisms that are linear for the normalizer of a parahoric subgroup. We identify this subgroup to be the Iwahori subgroup in the supersingular case, and $\mathrm {GL}_2(\mathbf {Z}_p)$ in the principal series case. As an application, we relate the action of parahoric subgroups to the action of the inertia group of $\mathrm {Gal}(\overline {\mathbf {Q}}_p/\mathbf {Q}_p)$, and we prove that if an irreducible Banach space representation $\Pi$ of $\mathrm {GL}_2(\mathbf {Q}_p)$ has infinite $\mathrm {GL}_2(\mathbf {Z}_p)$-length, then a twist of $\Pi$ has locally algebraic vectors. This answers a question of Dospinescu. We make the simplifying assumption that $p > 3$ and that all our representations are generic.
We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple $p$-adic group $G$ and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups. In particular, we formulate a precise conjecture about the relation with a version of Lusztig's nonabelian Fourier transform on the space of unipotent representations of the (possibly disconnected) reductive quotients of maximal compact subgroups. We give evidence for the conjecture, including proofs for ${\mathsf {SL}}_n$ and ${\mathsf {PGL}}_n$.
An extension of Szemerédi’s theorem is proved for sets of positive density in approximate lattices in general locally compact and second countable abelian groups. As a consequence, we establish a recent conjecture of Klick, Strungaru and Tcaciuc. Via a novel version of Furstenberg’s correspondence principle, which should be of independent interest, we show that our Szemerédi theorems can be deduced from a general transverse multiple recurrence theorem, which we establish using a recent work of Austin [Non-conventional ergodic averages for several commuting actions of an amenable group. J. Anal. Math.130 (2016), 243–274].
We show that linearly repetitive weighted Delone sets in groups of polynomial growth have a uniquely ergodic hull. This result applies in particular to the linearly repetitive weighted Delone sets in homogeneous Lie groups constructed in the companion paper [S. Beckus, T. Hartnick and F. Pogorzelski. Symbolic substitution beyond Abelian groups. Preprint, 2021, arXiv:2109.15210] using symbolic substitution methods. More generally, using the quasi-tiling method of Ornstein and Weiss, we establish unique ergodicity of hulls of weighted Delone sets in amenable unimodular locally compact second countable groups under a new repetitivity condition which we call tempered repetitivity. For this purpose, we establish a general sub-additive convergence theorem, which also has applications concerning the existence of Banach densities and uniform approximation of the spectral distribution function of finite hopping range operators on Cayley graphs.
Given a Fell bundle $\mathcal {B}=\{B_t\}_{t\in G}$ over a locally compact group G and a closed subgroup $H\subset G,$ we construct quotients $C^{*}_{H\uparrow \mathcal {B}}(\mathcal {B})$ and $C^{*}_{H\uparrow G}(\mathcal {B})$ of the full cross-sectional C*-algebra $C^{*}(\mathcal {B})$ analogous to Exel–Ng’s reduced algebras $C^{*}_{\mathop {\mathrm {r}}}(\mathcal {B})\equiv C^{*}_{\{e\}\uparrow \mathcal {B}}(\mathcal {B})$ and $C^{*}_R(\mathcal {B})\equiv C^{*}_{\{e\}\uparrow G}(\mathcal {B}).$ An absorption principle, similar to Fell’s one, is used to give conditions on $\mathcal {B}$ and H (e.g., G discrete and $\mathcal {B}$ saturated, or H normal) ensuring $C^{*}_{H\uparrow \mathcal {B}}(\mathcal {B})=C^{*}_{H\uparrow G}(\mathcal {B}).$ The tools developed here enable us to show that if the normalizer of H is open in G and $\mathcal {B}_H:=\{B_t\}_{t\in H}$ is the reduction of $\mathcal {B}$ to $H,$ then $C^{*}(\mathcal {B}_H)=C^{*}_{\mathop {\mathrm {r}}}(\mathcal {B}_H)$ if and only if $C^{*}_{H\uparrow \mathcal {B}}(\mathcal {B})=C^{*}_{\mathop {\mathrm {r}}}(\mathcal {B});$ the last identification being implied by $C^{*}(\mathcal {B})=C^{*}_{\mathop {\mathrm {r}}}(\mathcal {B}).$ We also prove that if G is inner amenable and $C^{*}_{\mathop {\mathrm {r}}}(\mathcal {B})\otimes _{\max } C^{*}_{\mathop {\mathrm {r}}}(G)=C^{*}_{\mathop {\mathrm { r}}}(\mathcal {B})\otimes C^{*}_{\mathop {\mathrm {r}}}(G),$ then $C^{*}(\mathcal {B})=C^{*}_{\mathop {\mathrm {r}}}(\mathcal {B}).$
In Caspers et al. (Can. J. Math. 75[6] [2022], 1–18), transference results between multilinear Fourier and Schur multipliers on noncommutative $L_p$-spaces were shown for unimodular groups. We propose a suitable extension of the definition of multilinear Fourier multipliers for non-unimodular groups and show that the aforementioned transference results also hold in this more general setting.
We study generic properties of topological groups in the sense of Baire category.
First, we investigate countably infinite groups. We extend a classical result of B. H. Neumann, H. Simmons and A. Macintyre on algebraically closed groups and the word problem. Recently, I. Goldbring, S. Kunnawalkam Elayavalli, and Y. Lodha proved that every isomorphism class is meager among countably infinite groups. In contrast, it follows from the work of W. Hodges on model-theoretic forcing that there exists a comeager isomorphism class among countably infinite abelian groups. We present a new elementary proof of this result.
Then, we turn to compact metrizable abelian groups. We use Pontryagin duality to show that there is a comeager isomorphism class among compact metrizable abelian groups. We discuss its connections to the countably infinite case.
Finally, we study compact metrizable groups. We prove that the generic compact metrizable group is neither connected nor totally disconnected; also it is neither torsion-free nor a torsion group.
The famous Cheng-Shen’s conjecture in Riemann-Finsler geometry claims that every n-dimensional closed W-quadratic Randers manifold is a Berwald manifold. In this paper, first we study the Riemann and Ricci curvatures of homogeneous Finsler manifolds and obtain some rigidity theorems. Then, by using this investigation, we construct a family of W-quadratic Randers metrics which are not R-quadratic nor strongly Ricci-quadratic.
We study the planar 3-colorablesubgroup $\mathcal{E}$ of Thompson’s group F and its even part ${\mathcal{E}_{\rm EVEN}}$. The latter is obtained by cutting $\mathcal{E}$ with a finite index subgroup of F isomorphic to F, namely the rectangular subgroup $K_{(2,2)}$. We show that the even part ${\mathcal{E}_{\rm EVEN}}$ of the planar 3-colorable subgroup admits a description in terms of stabilisers of suitable subsets of dyadic rationals. As a consequence ${\mathcal{E}_{\rm EVEN}}$ is closed in the sense of Golan and Sapir. We then study three quasi-regular representations associated with ${\mathcal{E}_{\rm EVEN}}$: two are shown to be irreducible and one to be reducible.
Let G be a split connected reductive group defined over $\mathbb {Z}$. Let F and $F'$ be two non-Archimedean m-close local fields, where m is a positive integer. D. Kazhdan gave an isomorphism between the Hecke algebras $\mathrm {Kaz}_m^F :\mathcal {H}\big (G(F),K_F\big ) \rightarrow \mathcal {H}\big (G(F'),K_{F'}\big )$, where $K_F$ and $K_{F'}$ are the mth usual congruence subgroups of $G(F)$ and $G(F')$, respectively. On the other hand, if $\sigma $ is an automorphism of G of prime order l, then we have Brauer homomorphism $\mathrm {Br}:\mathcal {H}(G(F),U(F))\rightarrow \mathcal {H}(G^\sigma (F),U^\sigma (F))$, where $U(F)$ and $U^\sigma (F)$ are compact open subgroups of $G(F)$ and $G^\sigma (F),$ respectively. In this article, we study the compatibility between these two maps in the local base change setting. Further, an application of this compatibility is given in the context of linkage – which is the representation theoretic version of Brauer homomorphism.
Entropy of measure-preserving or continuous actions of amenable discrete groups allows for various equivalent approaches. Among them are those given by the techniques developed by Ollagnier and Pinchon on the one hand and the Ornstein–Weiss lemma on the other. We extend these two approaches to the context of actions of amenable topological groups. In contrast to the discrete setting, our results reveal a remarkable difference between the two concepts of entropy in the realm of non-discrete groups: while the first quantity collapses to 0 in the non-discrete case, the second yields a well-behaved invariant for amenable unimodular groups. Concerning the latter, we moreover study the corresponding notion of topological pressure, prove a Goodwyn-type theorem, and establish the equivalence with the uniform lattice approach (for locally compact groups admitting a uniform lattice). Our study elaborates on a version of the Ornstein–Weiss lemma due to Gromov.