We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given an action
${\varphi }$
of inverse semigroup S on a ring A (with domain of
${\varphi }(s)$
denoted by
$D_{s^*}$
), we show that if the ideals
$D_e$
, with e an idempotent, are unital, then the skew inverse semigroup ring
$A\rtimes S$
can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.
Let F be a non-Archimedean local field of characteristic zero. Let G = GL(2, F) and
$3\widetildeG = \widetilde{GL}(2,F)$
be the metaplectic group. Let τ be the standard involution on G. A well-known theorem of Gelfand and Kazhdan says that the standard involution takes any irreducible admissible representation of G to its contragredient. In such a case, we say that τ is a dualizing involution. In this paper, we make some modifications and adapt a topological argument of Tupan to the metaplectic group
$\widetildeG$
and give an elementary proof that any lift of the standard involution to
$\widetildeG$
; is also a dualizing involution.
Many phenomena in geometry and analysis can be explained via the theory of $D$-modules, but this theory explains close to nothing in the non-archimedean case, by the absence of integration by parts. Hence there is a need to look for alternatives. A central example of a notion based on the theory of $D$-modules is the notion of holonomic distributions. We study two recent alternatives of this notion in the context of distributions on non-archimedean local fields, namely $\mathscr{C}^{\text{exp}}$-class distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)] by showing that each distribution of the $\mathscr{C}^{\text{exp}}$-class is WF-holonomic and thus provides a framework of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting because the $\mathscr{C}^{\text{exp}}$-class contains many natural distributions, in particular, the distributions studied by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We show also another stability result of this class, namely, one can regularize distributions without leaving the $\mathscr{C}^{\text{exp}}$-class. We strengthen a link from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] between zero loci and smooth loci for functions and distributions of the $\mathscr{C}^{\text{exp}}$-class. A key ingredient is a new resolution result for subanalytic functions (by alterations), based on embedded resolution for analytic functions and model theory.
For a locally compact group G, we study the distality of the action of automorphisms T of G on SubG, the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on SubG if and only if Tn is the identity map for some
$n\in\mathbb N$
. As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on SubG if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on SubG if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on SubG. We also show that any compactly generated distal group G is Lie projective.
Let $\unicode[STIX]{x1D6F4}$ be a compact orientable surface of genus $g=1$ with $n=1$ boundary component. The mapping class group $\unicode[STIX]{x1D6E4}$ of $\unicode[STIX]{x1D6F4}$ acts on the $\mathsf{SU}(3)$-character variety of $\unicode[STIX]{x1D6F4}$. We show that the action is ergodic with respect to the natural symplectic measure on the character variety.
The aim of the article is to provide a characterization of the Haagerup property for locally compact, second countable groups in terms of actions on $\unicode[STIX]{x1D70E}$-finite measure spaces. It is inspired by the very first definition of amenability, namely the existence of an invariant mean on the algebra of essentially bounded, measurable functions on the group.
We show a Siegel–Weil formula in the setting of exceptional theta correspondence. Using this, together with a new Rankin–Selberg integral for the Spin L-function of $\text{PGSp}_{6}$ discovered by Pollack, we prove that a cuspidal representation of $\text{PGSp}_{6}$ is a (weak) functorial lift from the exceptional group $G_{2}$ if its (partial) Spin L-function has a pole at $s=1$.
Motivated by the Bruhat and Cartan decompositions of general linear groups over local fields, we enumerate double cosets of the group of label-preserving automorphisms of a label-regular tree over the fixator of an end of the tree and over maximal compact open subgroups. This enumeration is used to show that every continuous homomorphism from the automorphism group of a label-regular tree has closed range.
Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of
$\mathfrak {sl}_2$
, where they use singular blocks of category
$\mathcal {O}$
for
$\mathfrak {sl}_n$
and translation functors. Here we construct a positive characteristic analogue using blocks of representations of
$\mathfrak {s}\mathfrak {l}_n$
over a field
$\mathbf {k}$
of characteristic p with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig’s conjectures for representations of Lie algebras in positive characteristic.
Soient
$F$
un corps global, et
$G$
un groupe réductif connexe défini sur
$F$
. On prouve que si deux données endoscopiques de
$G$
sont équivalentes en presque toute place de
$F$
, alors elles sont équivalentes. Le résultat est encore vrai pour l’endoscopie (ordinaire) avec caractère. On donne aussi, pour
$F$
global ou local et
$G$
quasi-simple simplement connexe, une description des données endoscopiques elliptiques de
$G$
.
In this paper, we study Finsler warped product metrics with relatively isotropic Landsberg curvature. We obtain the differential equations that characterize such metrics. Then we give some examples.
We construct analogues of Rankin–Selberg integrals for Speh representations of the general linear group over a $p$-adic field. The integrals are in terms of the (extended) Shalika model and are expected to be the local counterparts of (suitably regularized) global integrals involving square-integrable automorphic forms and Eisenstein series on the general linear group over a global field. We relate the local integrals to the classical ones studied by Jacquet, Piatetski-Shapiro and Shalika. We also introduce a unitary structure for Speh representation on the Shalika model, as well as various other models including Zelevinsky’s degenerate Whittaker model.
In this paper, we introduce quotients of étale groupoids. Using the notion of quotients, we describe the abelianizations of groupoid C*-algebras. As another application, we obtain a simple proof that effectiveness of an étale groupoid is implied by a Cuntz–Krieger uniqueness theorem for a universal groupoid C*-algebra.
In this paper we consider uncertainty principles for solutions of certain partial differential equations on $H$-type groups. We first prove that, on $H$-type groups, the heat kernel is an average of Gaussians in the central variable, so that it does not satisfy a certain reformulation of Hardy’s uncertainty principle. We then prove the analogue of Hardy’s uncertainty principle for solutions of the Schrödinger equation with potential on $H$-type groups. This extends the free case considered by Ben Saïd et al. [‘Uniqueness of solutions to Schrödinger equations on H-type groups’, J. Aust. Math. Soc. (3)95 (2013), 297–314] and by Ludwig and Müller [‘Uniqueness of solutions to Schrödinger equations on 2-step nilpotent Lie groups’, Proc. Amer. Math. Soc.142 (2014), 2101–2118].
Several well-known open questions (such as: are all groups sofic/hyperlinear?) have a common form: can all groups be approximated by asymptotic homomorphisms into the symmetric groups $\text{Sym}(n)$ (in the sofic case) or the finite-dimensional unitary groups $\text{U}(n)$ (in the hyperlinear case)? In the case of $\text{U}(n)$, the question can be asked with respect to different metrics and norms. This paper answers, for the first time, one of these versions, showing that there exist finitely presented groups which are not approximated by $\text{U}(n)$ with respect to the Frobenius norm $\Vert T\Vert _{\text{Frob}}=\sqrt{\sum _{i,j=1}^{n}|T_{ij}|^{2}},T=[T_{ij}]_{i,j=1}^{n}\in \text{M}_{n}(\mathbb{C})$. Our strategy is to show that some higher dimensional cohomology vanishing phenomena implies stability, that is, every Frobenius-approximate homomorphism into finite-dimensional unitary groups is close to an actual homomorphism. This is combined with existence results of certain nonresidually finite central extensions of lattices in some simple $p$-adic Lie groups. These groups act on high-rank Bruhat–Tits buildings and satisfy the needed vanishing cohomology phenomenon and are thus stable and not Frobenius-approximated.
To study when a paratopological group becomes a topological group, Arhangel’skii et al. [‘Topological games and topologies on groups’, Math. Maced.8 (2010), 1–19] introduced the class of $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable spaces. We show that every $\unicode[STIX]{x1D707}$-complete (or normal) $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable semitopological group is a topological group. We prove that the product of a $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable space and a strongly Fréchet $(\unicode[STIX]{x1D6FC},G_{\unicode[STIX]{x1D6F1}})$-favourable space is $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable. We also show that continuous closed irreducible mappings preserve the $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourableness in both directions.
We study the locally compact abelian groups in the class
${\mathfrak E_{ \lt \infty }}$
, that is, having only continuous endomorphisms of finite topological entropy, and in its subclass
$\mathfrak E_0$
, that is, having all continuous endomorphisms with vanishing topological entropy. We discuss the reduction of the problem to the case of periodic locally compact abelian groups, and then to locally compact abelian p-groups. We show that locally compact abelian p-groups of finite rank belong to
${\mathfrak E_{ \lt \infty }}$
, and that those of them that belong to
$\mathfrak E_0$
are precisely the ones with discrete maximal divisible subgroup. Furthermore, the topological entropy of endomorphisms of locally compact abelian p-groups of finite rank coincides with the logarithm of their scale. The backbone of the paper is the Addition Theorem for continuous endomorphisms of locally compact abelian groups. Various versions of the Addition Theorem are established in the paper and used in the proofs of the main results, but its validity in the general case remains an open problem.
Furstenberg has associated to every topological group $G$ a universal boundary $\unicode[STIX]{x2202}(G)$. If we consider in addition a subgroup $H<G$, the relative notion of $(G,H)$-boundaries admits again a maximal object $\unicode[STIX]{x2202}(G,H)$. In the case of discrete groups, an equivalent notion was introduced by Bearden and Kalantar (Topological boundaries of unitary representations. Preprint, 2019, arXiv:1901.10937v1) as a very special instance of their constructions. However, the analogous universality does not always hold, even for discrete groups. On the other hand, it does hold in the affine reformulation in terms of convex compact sets, which admits a universal simplex $\unicode[STIX]{x1D6E5}(G,H)$, namely the simplex of measures on $\unicode[STIX]{x2202}(G,H)$. We determine the boundary $\unicode[STIX]{x2202}(G,H)$ in a number of cases, highlighting properties that might appear unexpected.
We study lattice embeddings for the class of countable groups $\unicode[STIX]{x1D6E4}$ defined by the property that the largest amenable uniformly recurrent subgroup ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is continuous. When ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ comes from an extremely proximal action and the envelope of ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is coamenable in $\unicode[STIX]{x1D6E4}$, we obtain restrictions on the locally compact groups $G$ that contain a copy of $\unicode[STIX]{x1D6E4}$ as a lattice, notably regarding normal subgroups of $G$, product decompositions of $G$, and more generally dense mappings from $G$ to a product of locally compact groups.
We prove that the HRT (Heil, Ramanathan, and Topiwala) Conjecture is equivalent to the conjecture that co-central translates of square-integrable functions on the Heisenberg group are linearly independent.