To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The impact of alkaline solutions (pH = 13.2) on the clay mineralogy of the Callovo-Oxfordian formation hosting the French underground laboratory for nuclear waste disposal investigation (Meuse-Haute Marne site) has been studied experimentally. Initially, each of the four samples selected as representative of the mineralogical transition in this Callovo-Oxfordian formation consists of a mixture of three main clay phases: discrete illite, discrete smectite and a randomly interstratified mixed-layered mineral (MLM) containing ∼65% of non-expandable layers. Clay separates were altered in batch reactors at 60°C using high solution:solid ratios. The mineralogy of this clay fraction and solution chemistry were monitored as a function of reaction time. In addition, the interactions between organic matter and clay particles were investigated using scanning transmission X-ray microscopy (STXM).
The clay mineralogy is little affected even though the pH is still high after 1 y reaction time. The only significant mineralogical evolution is the partial dissolution of the discrete smectite component leading to the formation of a new randomly interstratified illite-expandable MLM. Additional mineralogical transformations lead, for one sample, to the dissolution of micro-crystalline quartz and, for another sample, to the crystallization of a tobermorite-like phase. The low reactivity of clay minerals may be attributed to the presence of organic matter in the samples. In their initial state, all outer surfaces of clay particles are indeed covered with organic matter. After 1 y reaction time, STXM studies showed the basal surfaces of clay particles to be devoid of organic matter, but their edges, which are the most reactive sites, were still protected.
Cobalt (II) and Al (III) layered double hydroxides were precipitated from homogeneous solutions using urea hydrolysis under hydrothermal conditions. The particle sizes were controlled successfully by changing the reaction temperature and period. It was found that larger particles formed by reactions at lower temperatures over longer reaction periods because the slow urea hydrolysis at lower temperatures suppresses the formation of nuclei in the solution. When the reaction was conducted at 60°C for 100 days, particles >40 µm wide were obtained.
Investigation of the organization of interlayer water and cations in smectite is a permanent topic in clay science for environmental science, civil engineering, materials science, and industrial applications. Experimental X-ray (or neutron) diffraction methods and molecular simulations are key techniques to probe the organization of the smectite structure at a similar molecular length scale. The combination of both of these experimental and numerical methods represents a complementary approach to reveal the structural heterogeneity of real samples, design and model a wide range of smectite structures, and validate the simulation results through comparison with experimental data.
This paper first revisits establishment of the original interlayer model as developed in the 1930s for the organization of water and ions in the smectite structure using X-ray diffraction (XRD) techniques. Then, based on a simplified approach, key theoretical tools are provided to calculate XRD pattern 00l reflections for a periodic smectite structure with a wide range of interlayer compositions and organizations using conventional spreadsheet software. In addition to educational purposes, this theoretical description is used to describe the principal parameters governing the positions and intensities of experimental XRD 00l reflections. This calculation toolbox is also used to determine better the layer-to-layer distances considered in molecular simulations and to validate these simulations through a detailed collation procedure using experimental data.
Recent examples of the application of such a procedure to collate experimental diffraction data and molecular simulations are presented for the specific case of deciphering the molecular organization of interlayer water and cations in the different smectite hydrates (mono-, bi-, and tri-hydrated layers). The extension of this approach to the interlayer refinement of organo-clays is also detailed, and perspectives regarding the characterization of other lamellar compounds are discussed.
The formation of siderite and magnetite by Fe(III)-reducing bacteria may play an important role in C and Fe geochemistry in subsurface and ocean sediments. The objective of this study was to identify environmental factors that control the formation of siderite (FeCO3) and magnetite (Fe3O4) by Fe(III)-reducing bacteria. Psychrotolerant (<20°C), mesophilic (20–35°C) and thermophilic (>45°C) Fe(III)-reducing bacteria were used to examine the reduction of a poorly crystalline iron oxide, akaganeite (β-FeOOH), without a soluble electron shuttle, anthraquinone disulfuonate (AQDS), in the presence of N2, N2-CO2(80:20, V:V), H2 and H2-CO2 (80:20, V:V) headspace gases as well as in -buffered medium (30–210 mM) under a N2 atmosphere. Iron biomineralization was also examined under different growth conditions such as salinity, pH, incubation time, incubation temperature and electron donors. Magnetite formation was dominant under a N2 and a H2 atmosphere. Siderite formation was dominant under a H2-CO2 atmosphere. A mixture of magnetite and siderite was formed in the presence of a N2-CO2 headspace. Akaganeite was reduced and transformed to siderite and magnetite in a -buffered medium (>120 mM) with lactate as an electron donor in the presence of a N2 atmosphere. Biogeochemical and environmental factors controlling the phases of the secondary mineral suite include medium pH, salinity, electron donors, atmospheric composition and incubation time. These results indicate that microbial Fe(III) reduction may play an important role in Fe and C biogeochemistry as well as C sequestration in natural environments.
Nontronite NAu-1 was exposed to moderate temperature and pressure conditions (250 and 300°C at 100 MPa pressure) in KCl brine to simulate burial diagenetic systems over accelerated time periods appropriate for laboratory experiments. Powder X-ray diffraction and transmission electron microscopy analysis of the coexisting mixed-layer and discrete 10 Å clay reaction products, and inductively coupled plasma-mass spectrometry analysis of the remaining fluids, indicated that the clay retained octahedral Fe and was identified as Fe-celadonite. The release of Fe from smectite during burial diagenesis has been hypothesized as a mechanism for magnetite authigenesis. High Al activity relative to Fe may be critical to the formation of an aluminous illite and any associated authigenic magnetite.
Humic acid (HA) can cause environmental pollution, due to which, its removal from aqueous solutions has become an increasingly important issue. Although bentonite has an affinity for HA, the adsorption capacity of raw bentonite is still poor. As a commonly used organic modifier, 3-aminopropyltriethoxyorganosilane (APTES) exhibits excellent flocculation capability for HA. Therefore, the objective of the present study was to investigate the effectiveness of the addition of 3-aminopropyltriethoxyorganosilane (APTES) to raw bentonite to increase the adsorption of HA from aqueous solution. The experimental results showed that, when the solid-to-liquid ratio was 1:1, the amino-modified bentonite exhibited the highest adsorption capacity (qmax = 272.23 mg g-1). The adsorption affinity of amino-modified bentonite was mainly determined by the number of amino groups loaded onto its surface. The adsorption of HA on amino-modified bentonite occurred through electrostatic interactions and hydrogen bonding. These findings demonstrate the excellent potential of amino-modified bentonite in effectively remediating HA pollution.
From leaching experiments with metallic uranium-aluminum research reactor fuel elements in repository-relevant MgCl2-rich salt brines, a Mg-Al layered double hydroxide (LDH) with chloride as the interlayer anion was identified as a crystalline secondary phase component. The incorporation behavior of europium into the structure of the Mg-Al-Cl LDH was investigated. Synthesis via co-precipitation was performed. The Mg-Al-Eu-Cl LDH obtained was treated with a concentrated ammonium carbonate solution. No release of Eu was detected; hence the molar stoichiometry of the LDH remained stable with respect to Mg, Al and Eu. This chemical behavior might be the first indication of the incorporation of Eu.
The material was further examined by powder X-ray diffraction. Structural parameters were obtained from comparisons of simulated and experimental diffraction patterns of a ${\rm{CO}}_3^{2 - }$-exchanged Mg-Al-Eu LDH and a Mg-Al LDH. The two materials showed different behaviors according to stacking order and lattice parameters. This is an indirect indication of the incorporation of Eu.
The properties of Si-associated goethite from sediments in the Atlantis II and Thetis Deeps in the Red Sea have been investigated in order to determine the effect of Si on the mineral. Two types of morphologies dominate in most samples: multi-domain crystallites, probably due to elevated Na concentration in the initial brine from which the mineral had crystallized, and mono-domain, acicular crystals. Goethite crystals with elevated Si/Fe elemental ratios are usually smaller and poorly crystalline, exhibiting numerous crystal defects, whereas larger crystals with higher crystallinity have lower Si/Fe elemental ratios. The higher Si/Fe ratios in Atlantis II Deep goethites and the lower ratio in Thetis Deep goethites probably reflect the levels of Si concentration in the hydrothermal fluids from which goethite precipitated. At relatively low Si/Fe ratios, the major effect of Si is to retard growth of the crystallites, but only a small number of defects are formed. At high Si/Fe ratios the defect concentration affects the properties of the crystals, as observed with Mössbauer spectroscopy. The Si association with goethite affects crystallinity and crystal size as indicated by X-ray diffraction, infrared spectroscopy and high-resolution transmission electron microscopy.
Proteins and protein-like molecules are abundant in various geochemical environments; they form complexes with mineral surfaces and with dissolved organic matter. To evaluate the effect of proteins on rates of dissolution of minerals, experiments on the dissolution of amorphous silica in solutions containing various concentrations of bovine serum albumin (BSA) were performed in this study. The dissolution experiments were carried out by a batch method using solutions of 0.1 mM NaCl with 0.00, 0.05, 0.1, 0.2, 0.5, and 1.0 mg/mL of BSA at three different pH conditions, 6, 5, and 4. The results of the experiments demonstrated that BSA exhibited strong rate-enhancement effects on the dissolution of amorphous silica and were dependent on BSA concentration and the solution pH. At pH 6, the dissolution rates of amorphous silica appeared to increase successively by ~1.6, 2.2, 2.4, 2.5, and 2.9 times with increasing BSA concentrations of 0.05, 0.1, 0.2, 0.5, and 1.0 mg/mL, respectively. The rates of dissolution increased by greater degrees, ~3.1–5.8 and 4.9–13.0 times at pH 5 and 4, respectively. According to the calculated charge distributions of amino acid residues of the BSA molecule, the dissolution rates of amorphous silica were likely to be enhanced by attractive electrostatic interactions of the positively charged side chains of lysine, arginine, and histidine residues with the negatively charged >SiO− sites on the amorphous silica surface. The negatively charged side chains such as glutamic acid and aspartic acid residues may inhibit the attractive interaction, depending on the degree of deprotonation.
During the 1519–1522 Magellan expedition, the astronomer Andrés de San Martín made two remarkably accurate longitude measurements, an order of magnitude better than what was typical for the 16th century. How he managed to do so remained shrouded in mystery for the past 500 years. Using modern ephemerides, we have retraced San Martín's observations and calculated their error signatures, clarifying the method he used (a simplified version of lunar distances) and why two out of his six measurements were accurate (a rather fortuitous cancellation of errors). It would be rash to dismiss San Martín's work as sheer luck though, as he was an exceedingly rare combination of a capable astronomer and a knowledgeable mariner.
Loess is a large-scale deposit which is easy to mine and widely distributed on the epipedon. The clay fraction of loess, also known as ‘loessial clay’, is a very important component of loess which affects its properties and performance. From a ‘materials’ perspective, the clay fraction of loess has been ignored. Recently, loess particles have attracted interest because of their potential applications. The focus in the current review is on the methods of modifying loess particles and their application as functional materials. The major components of loess particles are clays, calcite, and quartz, with the clays including kaolinite, illite, montmorillonite, and chlorite. Loess has a range of particle sizes, types, and dispersibilities. The particles agglomerate readily, mainly because cementation occurs readily in the clay fraction. Loess particles can be modified and their properties can be improved by compaction, separation, purification, acidification, calcination, surfactant modification, geopolymerization, and polymer modification. Loess-based functional materials have been used as sorbents, eco-friendly superabsorbents, soil and water conservation materials, humidity-regulating materials, and building materials. Separated and purified loess particles can adsorb metal ions and harmful elements directly. Surfactant-modified loess particles can remove organic compounds effectively. After modification with polymers, loess particles exhibit greater capacity for the removal of environmental pollutants such as harmful metal ions and dyes. As a superabsorbent, modified loess shows excellent thermal stability and swelling behavior. Calcined loess could be utilized as an energy-saving building material with good humidity-regulating performance, and geological polymerization has further expanded the scope of applications of loess in architecture. In summary, loess-based functional materials, which are inexpensive and ecologically friendly, deserve more attention and further development.
Synthetic siliceous mesoporous materials are of great value in many different applications, including nanotechnology, biotechnology, information technology, and medical fields, but historically the resource materials used in their synthesis have been expensive. Recent efforts have focused on indirect synthesis methods which utilize less expensive silicate minerals as a resource material. The purpose of the present study was to investigate talc, a natural silicate mineral, as one such resource. It was used as raw material to prepare two advanced materials: porous silica (PS) and ordered mesoporous silica (MCM-41). The PS, with a specific surface area of 260 m2/g and bimodal pore-size distribution of 1.2 nm and 3.7 nm, was prepared by grinding and subsequent acid leaching. The MCM-41, with a large surface area of 974 m2/g and a narrow pore-size distribution of 2.8 nm, was obtained using a surfactant, cetyltrimethylammonium bromide (CTAB), by hydrothermal treatment using the as-prepared PS as a source of Si. The two resultant materials were characterized by small angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD), high-resolution transmission electron microscopy (HRTEM), solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared spectroscopy (FTIR), and N2 adsorption-desorption measurements. Based on these measurements, possible processes of transformation of PS from talc, upon acid treatment, and the formation of MCM-41 were investigated systemically. Acid leaching induced the transformation of a rigid layered structure to a nearly amorphous one, with micropores formed by a residual layered structure and mesopores formed from a condensed framework. The MCM-41 was a mixture of silanol groups (Si(SiO)3(OH)) and a condensed Q4 framework structure (Si(SiO)4), with a small amount of remaining Q3 layered structure (Si(SiO)3OMg). The increased Q4/Q3 value confirmed greater polymerization of MCM-41 than of PS. At the low CTAB concentration used (2 wt.%), the highly charged silicate species controlled the surfactant geometry. Charge-density matching, together with the degree of polymerization of the silicates, determined the resultant mesophase.
This article focuses on three of Beat Furrer's works described as opera or music theatre: Begehren (2001), FAMA (2005) and Wüstenbuch (2010). Each of these pieces sets texts from Roman, contemporary and historical authors in exploration of the liminal spaces between life and death, and the possible transitions between them. In Wüstenbuch one such text is included from the Papyrus Berlin 3024, known as the source of the Ancient Egyptian philosophical text ‘The Dispute between a Man and his Ba’, a reflection on the meaning and value of life and the transition between life and death. Furrer's compositional style does not offer a linear narrative on such questions but rather multiple perspectives and tableaux, each of which calls the others and itself into question. In order to explore this and understand what the meeting and interchange of the different texts and authors offers within the context of Furrer's music, I outline a method of ‘listening intertextually’ in order to hear the liminal spaces not only within but between these compositions. I consider the hybrid and hypertexts that arise within the music, and the ways that they can be therefore considered – as in the subtitle often given to FAMA – a ‘drama of listening’.
The chemical and structural properties of Mg smectites in the Vicálvaro sepiolite deposit have been studied in detail. The characterization was performed on different size-fractions of selected smectitic samples (5−2 µm; 2−1 µm; 1−0.5 µm; <0.5 µm and <0.1 µm). The chemical compositions of individual particles (5−1 µm) and of bulk undifferentiated fine fractions (1−<0.1 µm) were determined by energy dispersive spectroscopy-scanning electron microscopy and interpreted with the aid of X-ray diffraction (XRD) and infrared spectroscopy (IR) methods. The XRD and IR data demonstrate that all of the Mg smectite materials studied are mainly composed of a complex mixture of stevensite, saponite and mica-type minerals. Although the presence or absence of saponite cannot be confirmed absolutely, stevensite is a significant component of these Mg smectites. This is proven by the calculated layer charge reduction after the Hofmann-Klemen effect. The results are in close agreement with the suggested mechanism of topotactic overgrowth of stevensite on pre-existing phyllosilicate templates. This characterizes clay diagenesis in saline-lake systems.