Introduction
In this chapter we consider some optimization problems involving onetime investments not necessarily tied to the movement of a publicly traded security. Section 11.2 introduces a deterministic optimization problem where the objective is to determine an efficient algorithm for finding the optimal investment strategy when a fixed amount of money is to be invested in integral amounts among n projects, each having its own return function. Section 11.2.1 presents a dynamic programming algorithm that can always be used to solve the preceding problem; Section 11.2.2 gives a more efficient algorithm that can be employed when all the project return functions are concave; and Section 11.2.3 analyzes the special case, known as the knapsack problem, where project investments are made by purchasing integral numbers of shares, with each project return being a linear function of the number of shares purchased. Models in which probability is a key factor are considered in Section 11.3. Section 11.3.1 is concerned with a gambling model having an unknown win probability, and Section 11.3.2 examines a sequential investment allocation model where the number of investment opportunities is a random quantity.
A Deterministic Optimization Model
Suppose that you have m dollars to invest among n projects and that investing x in project i yields a (present value) return of fi(x), i = 1, …, n. The problem is to determine the integer amounts to invest in each project so as to maximize the sum of the returns.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.