Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 11: Optimization Models

Chapter 11: Optimization Models

pp. 212-227

Authors

, University of Southern California
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Introduction

In this chapter we consider some optimization problems involving onetime investments not necessarily tied to the movement of a publicly traded security. Section 11.2 introduces a deterministic optimization problem where the objective is to determine an efficient algorithm for finding the optimal investment strategy when a fixed amount of money is to be invested in integral amounts among n projects, each having its own return function. Section 11.2.1 presents a dynamic programming algorithm that can always be used to solve the preceding problem; Section 11.2.2 gives a more efficient algorithm that can be employed when all the project return functions are concave; and Section 11.2.3 analyzes the special case, known as the knapsack problem, where project investments are made by purchasing integral numbers of shares, with each project return being a linear function of the number of shares purchased. Models in which probability is a key factor are considered in Section 11.3. Section 11.3.1 is concerned with a gambling model having an unknown win probability, and Section 11.3.2 examines a sequential investment allocation model where the number of investment opportunities is a random quantity.

A Deterministic Optimization Model

Suppose that you have m dollars to invest among n projects and that investing x in project i yields a (present value) return of fi(x), i = 1, …, n. The problem is to determine the integer amounts to invest in each project so as to maximize the sum of the returns.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$88.00
Hardback
US$88.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers