Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 7: The Black–Scholes Formula

Chapter 7: The Black–Scholes Formula

pp. 106-130

Authors

, University of Southern California
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Introduction

In this chapter we derive the celebrated Black–Scholes formula, which gives – under the assumption that the price of a security evolves according to a geometric Brownian motion – the unique no-arbitrage cost of a call option on this security. Section 7.2 gives the derivation of the no-arbitrage cost, which is a function of five variables, and Section 7.3 discusses some of the properties of this function. Section 7.4 gives the strategy that can, in theory, be used to obtain an abitrage when the cost of the security is not as specified by the formula. Section 7.5, which is more theoretical than other sections of the text, presents simplified derivations of (1) the computational form of the Black–Scholes formula and (2) the partial derivatives of the no-arbitrage cost with respect to each of its five parameters.

The Black–Scholes Formula

Consider a call option having strike price K and expiration time t. That is, the option allows one to purchase a single unit of an underlying security at time t for the price K. Suppose further that the nominal interest rate is r, compounded continuously, and also that the price of the security follows a geometric Brownian motion with drift parameter μ and volatility parameter σ. Under these assumptions, we will find the unique cost of the option that does not give rise to an arbitrage.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$88.00
Hardback
US$88.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers