The usage of composite materials continues to expand rapidly. The current world-wide market value is not easy to estimate, but is certainly more than US$100 billion. Composites now constitute one of the broadest and most important classes of engineering materials – second only to steels in industrial significance and range of applications. There are several reasons for this. One is that they often offer highly attractive combinations of stiffness, strength, toughness, lightness and corrosion resistance. Another is that there is considerable scope for tailoring their structure to suit service conditions. This concept is well illustrated by biological materials such as wood, bone, teeth and hide, which are all composites with complex internal structures that have been designed (via evolutionary processes) to give mechanical properties well suited to the performance requirements. This versatility is, of course, attractive for many industrial purposes, although it also leads to complexity that needs to be well understood if they are to be used effectively. In fact, adaptation of manufactured composite structures for different engineering purposes requires input from several branches of science. In this introductory chapter, an overview is given of the types of composites that have been developed.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.