The behaviour of composite materials is often sensitive to changes in temperature. This arises for two main reasons. First, the response of the matrix to an applied load is often temperature-dependent; and second, changes in temperature can cause internal stresses to be set up as a result of differential thermal contraction and expansion of the two constituents. These stresses affect the thermal expansivity (expansion coefficient) of the composite. Furthermore, significant stresses are normally present in the material at ambient temperatures, since it has in most cases been cooled at the end of the fabrication process. Changes in internal stress state on altering the temperature can be substantial and may influence the response of the material to an applied load. Thermal cycling can thus have strong effects on, for example, creep characteristics. Finally, the thermal conductivity of composite materials is of interest, since many applications and processing procedures involve heat flow of some type. This property can be predicted from the conductivities of the constituents, although the situation may be complicated by poor thermal contact across the interfaces.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.