We define weak convergence and give some examples, including a proof of Schur’s Theorem that weak and strong convergence coincide in l^1. We also show that closed convex subsets of Banach spaces are weakly closed. We then introduce weak-* convergence and prove two powerful weak compactness theorems: Helly’s Theorem for weak-* convergence in the duals of separable Banach spaces and a weak sequential compactness theorem in reflexive Banach spaces.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.