We consider linear maps between normed spaces. We define what it means for a linear map to be bounded and show that this is equivalent to continuity. We define the norm of a linear operator and show that the space of all linear maps from X to Y is a vector space, which is complete if Y is complete. We give a number of examples and then discuss inverses and invertibility in some detail.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.