Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Appendix C: Post-processing of numerical model output to obtain station weather forecasts

Appendix C: Post-processing of numerical model output to obtain station weather forecasts

pp. 276-282

Authors

, University of Maryland, College Park
  • Add bookmark
  • Cite
  • Share

Summary

If the numerical model forecasts are skillful, the forecast variables should be strongly related to the weather parameters of interest to the “person in the street” and for other important applications. These include precipitation (amount and type), surface wind, and surface temperature, visibility, cloud amount and type, etc. However, the model output variables are not optimal direct estimates of local weather forecasts. This is because models have biases, the bottom surface of the models is not a good representation of the actual orography, and models may not represent well the effect of local forcings important for local weather forecasts. In addition, models do not forecast some required parameters, such as visibility and probability of thunderstorms.

In order to optimize the use of numerical weather forecasts as guidance for human forecasters, it has been customary to use statistical methods to “post-process” the model forecasts and adapt them to produce local forecasts. In this appendix we discuss three of the methods that have been used for this purpose.

Model Output Statistics (MOS)

This method, when applied under ideal circumstances, is the gold standard of NWP model output post-processing (Glahn and Lowry, 1972, Carter et al., 1989). MOS is essentially multiple linear regression, where the predictors hnj are model forecast variables (e.g., temperature, humidity, or wind at any grid point, either near the surface or in the upper levels), and may also include other astronomical or geographical parameters (such as latitude, longitude and time of the year) valid at time tn.

Access options

Review the options below to login to check your access.

Purchase options

There are no purchase options available for this title.

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers