Natural organisms inhabit a dynamical environment and arguably a large part of natural intelligence is in modelling causal relations and consequences of actions. In this sense, modelling temporal data is of fundamental interest. In a more artificial environment, there are many instances where predicting the future is of interest, particularly in areas such as finance and also in tracking of moving objects.
In Part IV, we discuss some of the classical models of timeseries that may be used to represent temporal data and also to make predictions of the future. Many of these models are well known in different branches of science from physics to engineering and are heavily used in areas such as speech recognition, financial prediction and control. We also discuss some more sophisticated models in Chapter 25, which may be skipped at first reading.
As an allusion to the fact that natural organisms inhabit a temporal world, we also address in Chapter 26 some basic models of how information processing might be achieved in distributed systems.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.