Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 1: Inference in probabilistic models

Chapter 1: Inference in probabilistic models

pp. 1-2

Authors

, University College London
Resources available Unlock the full potential of this textbook with additional resources. There are free resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Probabilistic models explicitly take into account uncertainty and deal with our imperfect knowledge of the world. Suchmodels are of fundamental significance in Machine Learning since our understanding of the world will always be limited by our observations and understanding. We will focus initially on using probabilistic models as a kind of expert system.

In Part I, we assume that the model is fully specified. That is, given a model of the environment, how can we use it to answer questions of interest? We will relate the complexity of inferring quantities of interest to the structure of the graph describing the model. In addition, we will describe operations in terms of manipulations on the corresponding graphs. As we will see, provided the graphs are simple tree-like structures, most quantities of interest can be computed efficiently.

Part I deals with manipulating mainly discrete variable distributions and forms the background to all the later material in the book.

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$94.00
Hardback
US$94.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers