Graph data is becoming increasingly more ubiquitous in today's networked world. Examples include social networks as well as cell phone networks and blogs. The Internet is another example of graph data, as is the hyperlinked structure of the World Wide Web (WWW). Bioinformatics, especially systems biology, deals with understanding interaction networks between various types of biomolecules, such as protein–protein interactions, metabolic networks, gene networks, and so on. Another prominent source of graph data is the Semantic Web, and linked open data, with graphs represented using the Resource Description Framework (RDF) data model.
The goal of graph mining is to extract interesting subgraphs from a single large graph (e.g., a social network), or from a database of many graphs. In different applications we may be interested in different kinds of subgraph patterns, such as subtrees, complete graphs or cliques, bipartite cliques, dense subgraphs, and so on. These may represent, for example, communities in a social network, hub and authority pages on the WWW, cluster of proteins involved in similar biochemical functions, and so on. In this chapter we outline methods to mine all the frequent subgraphs that appear in a database of graphs.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
There are no purchase options available for this title.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.