Before we can mine data, it is important to first find a suitable data representation that facilitates data analysis. For example, for complex data such as text, sequences, images, and so on, we must typically extract or construct a set of attributes or features, so that we can represent the data instances as multivariate vectors. That is, given a data instance x (e.g., a sequence), we need to find a mapping φ, so that φ(x) is the vector representation of x. Even when the input data is a numeric data matrix, if we wish to discover nonlinear relationships among the attributes, then a nonlinear mapping φ may be used, so that φ(x) represents a vector in the corresponding high-dimensional space comprising nonlinear attributes. We use the term input space to refer to the data space for the input data x and feature space to refer to the space of mapped vectors φ(x). Thus, given a set of data objects or instances xi, and given a mapping function φ, we can transform them into feature vectors φ(xi), which then allows us to analyze complex data instances via numeric analysis methods.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
There are no purchase options available for this title.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.