In this chapter, we (a) outline the subject and the terminology of mathematical and convex programming, (b) introduce the Slater and relaxed Slater conditions and formulate the Convex Theorem on the Alternative -- the basis of Lagrange duality theory in convex programming, (c) introduce the notions of cone-convexity and of the convex programming problem in cone-constrained form, thus extending the standard mathematical programming setup of convex optimization, and (d) formulate and prove the Convex Theorem on the Alternative in cone-constrained form, justifying, as a byproduct, the standard Convex Theorem on the Alternative.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.