Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 14: ★ Functions of Eigenvalues of Symmetric Matrices

Chapter 14: ★ Functions of Eigenvalues of Symmetric Matrices

pp. 212-217

Authors

, Carnegie Mellon University, Pennsylvania, , Georgia Institute of Technology
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Extract

In this chapter, we demonstrate that (a) substituting the vector of eigenvalues of a symmetric n x n matrix into a convex permutation symmetric function of n real variables results in a convex function of the matrix, and (b) that if g is a convex function on the real axis, and G is the set of symmetric matrices of a given size with spectrum in the domain of g, then G is a convex set, and when X is a matrix from G, the trace of the matrix g(X), is a convex function of X; here g(X) is the matrix acting at a spectral subspace of X associated with eigenvalue v as multiplication by g(v); both these facts will be heavily used when speaking about cone-convexity is chapter 21.

Keywords

  • functions of eigenvalues of symmetric matrices
  • matrix-valued functions of matrices

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$69.99
Hardback
US$69.99

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers