Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 3: Energetics

Chapter 3: Energetics

pp. 86-108

Authors

, Stanford University, California, , Stanford University, California
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Extract

We derive the governing equations for the mean and turbulent kinetic energy and discuss simplifications of the equations for several canonical flows, including channel flow and homogeneous isotropic turbulence. A classical expression for the dissipation rate in isotropic turbulence is provided. In addition, the governing equations for turbulent enstrophy and scalar variance are derived with parallels to the derivation of the turbulent kinetic energy equation. A model for turbulent kinetic energy evolution and dissipation in isotropic turbulence is introduced. Finally, we derive the governing equations for the Reynolds stress tensor components and discuss the roles of the terms in the Reynolds stress budgets in homogeneous shear and channel flows. A crucial link between pressure-strain correlations and the redistribution of turbulent kinetic energy between various velocity components is established. Quantifying how energy is transferred between the mean flow and turbulent fluctuations is crucial to understanding the generation and transport of turbulence and its accompanying Reynolds stresses, and thus properties that phenomenological turbulence models should conform to.

Keywords

  • Mean kinetic energy
  • turbulent kinetic energy
  • production
  • dissipation
  • turbulent enstrophy
  • scalar variance
  • Reynolds stress equations
  • pressure-strain correlations
  • intercomponent energy transfer
  • energetics

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$99.99
Hardback
US$99.99

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers