In many practical applications, one is interested only in the average or expected value of flow quantities, such as aerodynamic forces and heat transfer. Governing equations for these mean flow quantities may be derived by averaging the Navier-Stokes and temperature or scalar transport equations. Reynolds averaging introduces additional unknowns owing to the nonlinearity of the equations, which is known as the closure problem in the turbulence literature. Turbulence models for the unclosed terms in the averaged equations are a way to manage the closure problem, for they close the equations with phenomenological models that relate the unknown terms to the solution variables. It is important that these models do not alter the conservation and invariance properties of the original equations of motion. We take a closer look at the equations of motion to understand these fundamental qualities in more depth. We describe averaging operators for canonical turbulent flows at the core of basic turbulence research and modeling efforts, and discuss homogeneity and stationarity. We also examine the Galilean invariance of the equations of motion and the role of vorticity in turbulence dynamics.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.