Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 16: Deep Networks for Classification

Chapter 16: Deep Networks for Classification

pp. 526-572

Authors

, Columbia University, New York, , University of California, Berkeley
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

In the past decade or so, (deep) neural networks have captured people’s imagination through their empirical success in learning problems involving real-world high-dimensional data such as images, speech, and text [LBH15]. Nevertheless, there is quite a bit of mystery as to how deep networks achieve such striking results. Modern deep networks are typically designed through trial and error.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$89.00
Hardback
US$89.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers