The goal of this book is to introduce the basic methods used in the computational modeling of materials. The text reflects many tradeoffs: breadth versus depth, pedagogy versus detail, topic versus topic. The intent was to provide a sufficient background in the theory of these methods that the student can begin to apply them to the study of materials. That said, it is not a “computation” book – details of how to implement these methods in specific computer languages are not discussed in the text itself, though they are available from an online resource, which will be described a bit later in this preface.
Modeling and simulation are becoming critical tools in the materials researcher's tool box. My hope is that this text will help attract and prepare the next generation of materials modelers, whether modeling is their principal focus or not.
Structure of the book
This book is intended to be used by upper-level undergraduates (having taken statistical thermodynamics and at least some classical and quantum mechanics) and graduate students. Reflecting the nature of materials research, this text covers a wide range of topics. It is thus broad, but not deep. References to more detailed texts and discussions are given so that the interested reader can probe more deeply. For those without a materials science background, a brief introduction to crystallography, defects, etc. is given in Appendix B.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.