Formal methods have finally come of age! Specification languages, theorem provers, and model checkers are beginning to be used routinely in industry. Mathematical logic is basic to all of these techniques. Until now textbooks on logic for computer scientists have not kept pace with the development of tools for hardware and software specification and verification. For example, in spite of the success of model checking in verifying sequential circuit designs and communication protocols, until now I did not know of a single text, suitable for undergraduate and beginning graduate students, that attempts to explain how this technique works. As a result, this material is rarely taught to computer scientists and electrical engineers who will need to use it as part of their jobs in the near future. Instead, engineers avoid using formal methods in situations where the methods would be of genuine benefit or complain that the concepts and notation used by the tools are complicated and unnatural. This is unfortunate since the underlying mathematics is generally quite simple, certainly no more difficult than the concepts from mathematical analysis that every calculus student is expected to learn.
Logic in Computer Science by Huth and Ryan is an exceptional book. I was amazed when I looked through it for the first time. In addition to propositional and predicate logic, it has a particularly thorough treatment of temporal logic and model checking.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.