Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 5: Constrained Minimization

Chapter 5: Constrained Minimization

pp. 189-260

Authors

, Pennsylvania State University, , Rowan University, New Jersey
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Introduction

The majority of engineering problems involve constrained minimization – that is, the task is to minimize a function subject to constraints. A very common instance of a constrained optimization problem arises in finding the minimum weight design of a structure subject to constraints on stress and deflection. Important concepts pertaining to linear constrained problems were discussed in Sections 4.1–4.5 in Chapter 4 including active or binding constraints, Lagrange multipliers, computer solutions, and geometric concepts. These concepts are also relevant to nonlinear problems. The numerical techniques presented here directly tackle the nonlinear constraints, most of which call an LP solver within the iterative loop. In contrast, penalty function techniques transform the constrained problem into a sequence of unconstrained problems as discussed in Chapter 6. In this chapter, we first present graphical solution for two variable problems and solution using EXCEL SOLVER and MATLAB. Subsequently, formulating problems in “standard NLP” form is discussed followed by optimality conditions, geometric concepts, and convexity. Four gradient-based numerical methods applicable to problems with differentiable functions are presented in detail:

  • Rosen's Gradient Projection method for nonlinear objective and linear constraints

  • Zoutendijk's Method of Feasible Directions

  • The Generalized Reduced Gradient method

  • Sequential Quadratic Programming method

  • Each of these methods is accompanied by a computer program in the disk at the end of the book. The reader can learn the theory and application of optimization with the help of the software.

    Access options

    Review the options below to login to check your access.

    Purchase options

    There are no purchase options available for this title.

    Have an access code?

    To redeem an access code, please log in with your personal login.

    If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

    Also available to purchase from these educational ebook suppliers