Quantum mechanics has the curious distinction of being simultaneously the most successful and the most mysterious of our scientific theories. It was developed in fits and starts over a remarkable period from 1900 to the 1920s, maturing into its current form in the late 1920s. In the decades following the 1920s, physicists had great success applying quantum mechanics to understand the fundamental particles and forces of nature, culminating in the development of the standard model of particle physics. Over the same period, physicists had equally great success in applying quantum mechanics to understand an astonishing range of phenomena in our world, from polymers to semiconductors, from superfluids to superconductors. But, while these developments profoundly advanced our understanding of the natural world, they did only a little to improve our understanding of quantum mechanics.
This began to change in the 1970s and 1980s, when a few pioneers were inspired to ask whether some of the fundamental questions of computer science and information theory could be applied to the study of quantum systems. Instead of looking at quantum systems purely as phenomena to be explained as they are found in nature, they looked at them as systems that can be designed. This seems a small change in perspective, but the implications are profound. No longer is the quantum world taken merely as presented, but instead it can be created.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.