Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 18: Causal inference and randomized experiments

Chapter 18: Causal inference and randomized experiments

pp. 339-362

Authors

, Columbia University, New York, , New York University, , Aalto University, Finland
Resources available Unlock the full potential of this textbook with additional resources. There are free resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

So far, we have been interpreting regressions predictively: given the values of several inputs, the fitted model allows us to predict y, typically considering the n data points as a simple random sample from a hypothetical infinite “superpopulation” or probability distribution. Then we can make comparisons across different combinations of values for these inputs. This section of the book considers causal inference, which concerns what would happen to an outcome y as a result of a treatment, intervention, or exposure. This chapter introduces the notation and ideas of causal inference in the context of randomized experiments, which allow clean inference for average causal effects and serve as a starting point for understanding the tools and challenges of causal estimation.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$53.00
Hardback
US$105.00
Paperback
US$53.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers