With logistic as with linear regression, fitting is only part of the story. In this chapter we develop more advanced graphics to visualize data and fitted logistic regressions with one or more predictors. We discuss the challenges of interpreting coefficients in the presence of interactions and the use of linear transformations to aid understanding. We show how to make probabilistic predictions and how to average these predictions to obtain summaries–average predictive comparisons–that can be more interpretable than logistic regression coefficients. We discuss the evaluation of fitted models using binned residual plots and predictive errors, and we present all these tools in the context of a worked example. The chapter concludes with a discussion of the use of Bayesian inference and prior distributions to resolve a challenge of inference that arises with sparse discrete data, which again we illustrate with an applied example.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.