Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 6: Free-Shear Flows

Chapter 6: Free-Shear Flows

pp. 172-199

Authors

, Stanford University, California, , Stanford University, California
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Extract

In turbulent free-shear flows, fluid streams interact to generate regions of turbulence that evolve without being limited or confined by solid boundaries. Such interactions create mean shear, which is a source of turbulent kinetic energy that results in enhanced flow mixing. Far downstream, the flow retains little memory of its origins and exhibits self-similar behavior. Its mean velocity profile, turbulence intensities, and Reynolds stresses, when scaled appropriately, become independent of downstream distance as it freely expands into its surroundings. Free-shear flows occur in combustors, vehicle wakes, and jet engine exhaust. We focus our attention on three canonical categories of such flows: jets, wakes, and mixing layers. A detailed similarity analysis of the plane jet is provided alongside summarized results for the plane wake and mixing layer. We introduce examples involving turbines in wind farms and drag on wake-generating bodies. The notion of entrainment, which is central to the expansion of free-shear flows, is discussed. We also examine the scales and structural features of turbulent free-shear flows, including streamwise rib vortices and spanwise rollers.

Keywords

  • Jet
  • wake
  • mixing layer
  • self similarity
  • similarity analysis
  • entrainment
  • rib vortices
  • rollers
  • braids
  • mixing transition

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$99.99
Hardback
US$99.99

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers