To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Oriented matroids appear throughout discrete geometry, with applications in algebra, topology, physics, and data analysis. This introduction to oriented matroids is intended for graduate students, scientists wanting to apply oriented matroids, and researchers in pure mathematics. The presentation is geometrically motivated and largely self-contained, and no knowledge of matroid theory is assumed. Beginning with geometric motivation grounded in linear algebra, the first chapters prove the major cryptomorphisms and the Topological Representation Theorem. From there the book uses basic topology to go directly from geometric intuition to rigorous discussion, avoiding the need for wider background knowledge. Topics include strong and weak maps, localizations and extensions, the Euclidean property and non-Euclidean properties, the Universality Theorem, convex polytopes, and triangulations. Themes that run throughout include the interplay between combinatorics, geometry, and topology, and the idea of oriented matroids as analogs to vector spaces over the real numbers and how this analogy plays out topologically.