To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give combinatorially controlled series solutions to Dyson–Schwinger equations with multiple insertion places using tubings of rooted trees and investigate the algebraic relation between such solutions and the renormalization group equation.
Modified ascent sequences, initially defined as the bijective images of ascent sequences under a certain hat map, have also been characterized as Cayley permutations where each entry is a leftmost copy if and only if it is an ascent top. These sequences play a significant role in the study of Fishburn structures. In this paper, we investigate (primitive) modified ascent sequences avoiding a pattern of length 4 by combining combinatorial and algebraic techniques, including the application of the kernel method. Our results confirm several conjectures posed by Cerbai.
The lattice walks in the plane starting at the origin $\mathbf {0}$ with steps in $\{-1,0,1\}^{2}\setminus \{\mathbf {0}\}$ are called king walks. We investigate enumeration and divisibility for higher dimensional king walks confined to certain regions. Specifically, we establish an explicit formula for the number of $(r+s)$-dimensional king walks of length n ending at $(a_1,\ldots ,a_r,b_1,\ldots ,b_s)$ which never dip below $x_i=0$ for $i=1,\ldots ,r$. We also derive divisibility properties for the number of $(r+s)$-dimensional king walks of length p (an odd prime) through group actions.
Let $t\geq 2$ and $k\geq 1$ be integers. A t-regular partition of a positive integer n is a partition of n such that none of its parts is divisible by t. Let $b_{t,k}(n)$ denote the number of hooks of length k in all the t-regular partitions of n. In this article, we prove some inequalities for $b_{t,k}(n)$ for fixed values of k. We prove that for any $t\geq 2$, $b_{t+1,1}(n)\geq b_{t,1}(n)$, for all $n\geq 0$. We also prove that $b_{3,2}(n)\geq b_{2,2}(n)$ for all $n>3$, and $b_{3,3}(n)\geq b_{2,3}(n)$ for all $n\geq 0$. Finally, we state some problems for future works.
We prove a criterion of when the dual character $\chi _{D}(x)$ of the flagged Weyl module associated a diagram D in the grid $[n]\times [n]$ is zero-one, that is, the coefficients of monomials in $\chi _{D}(x)$ are either 0 or 1. This settles a conjecture proposed by Mészáros–St. Dizier–Tanjaya. Since Schubert polynomials and key polynomials occur as special cases of dual flagged Weyl characters, our approach provides a new and unified proof of known criteria for zero-one Schubert/key polynomials due to Fink–Mészáros–St. Dizier and Hodges–Yong, respectively.
This article explores the relationship between Hessenberg varieties associated with semisimple operators with two eigenvalues and orbit closures of a spherical subgroup of the general linear group. We establish the specific conditions under which these semisimple Hessenberg varieties are irreducible. We determine the dimension of each irreducible Hessenberg variety under consideration and show that the number of such varieties is a Catalan number. We then apply a theorem of Brion to compute a polynomial representative for the cohomology class of each such variety. Additionally, we calculate the intersections of a standard (Schubert) hyperplane section of the flag variety with each of our Hessenberg varieties and prove that this intersection possesses a cohomological multiplicity-free property.
We introduce a family of polynomials, which arise in three distinct ways: in the large N expansion of a matrix integral, as a weighted enumeration of factorizations of permutations, and via the topological recursion. More explicitly, we interpret the complex Grassmannian $\mathrm {Gr}(M,N)$ as the space of $N \times N$ idempotent Hermitian matrices of rank M and develop a Weingarten calculus to integrate products of matrix elements over it. In the regime of large N and fixed ratio $\frac {M}{N}$, such integrals have expansions whose coefficients count factorizations of permutations into monotone sequences of transpositions, with each sequence weighted by a monomial in $t = 1 - \frac {N}{M}$. This gives rise to the desired polynomials, which specialise to the monotone Hurwitz numbers when $t = 1$. These so-called deformed monotone Hurwitz numbers satisfy a cut-and-join recursion, a one-point recursion, and the topological recursion. Furthermore, we conjecture on the basis of overwhelming empirical evidence that the deformed monotone Hurwitz numbers are real-rooted polynomials whose roots satisfy remarkable interlacing phenomena. An outcome of our work is the viewpoint that the topological recursion can be used to “topologise” sequences of polynomials, and we claim that the resulting families of polynomials may possess interesting properties.
A partition is called a t-core if none of its hook lengths is a multiple of t. Let $a_t(n)$ denote the number of t-core partitions of n. Garvan, Kim and Stanton proved that for any $n\geq1$ and $m\geq1$, $a_t\big(t^mn-(t^2-1)/24\big)\equiv0\pmod{t^m}$, where $t\in\{5,7,11\}$. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n with t-cores. Several scholars have been subsequently investigated congruence properties modulo high powers of 5 for $A_{5,k}(n)$ with $k\in\{2,3,4\}$. In this paper, by utilizing a recurrence related to the modular equation of fifth order, we establish dozens of congruence families modulo high powers of 5 satisfied by $A_{5,k}(n)$, where $4\leq k\leq25$. Moreover, we deduce an infinite family of internal congruences modulo high powers of 5 for $A_{5,4}(n)$. In particular, we generalize greatly a recent result on a congruence family modulo high powers of 5 enjoyed by $A_{5,4}(n)$, which was proved by Saikia, Sarma and Talukdar (Indian J. Pure Appl. Math., 2024). Finally, we conjecture that there exists a similar phenomenon for $A_{5,k}(n)$ with $k\geq26$.
The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965), who proved there exist integers ${k_n}$ such that it is optimal to stop at n tosses when heads minus tails is ${k_n}$. Finding ${k_n}$ was unsolved except for finitely many cases by computer. We prove an $o(n^{-1/4})$ estimate of the stopping boundary of Dvoretsky (1967), which then proves ${k_n} = \left\lceil {\alpha \sqrt n \,\, - 1/2\,\, + \,\,\frac{{\left( { - 2\zeta (\! -1/2)} \right)\sqrt \alpha }}{{\sqrt \pi }}{n^{ - 1/4}}} \right\rceil $ except for n in a set of density asymptotic to 0, at a power law rate. Here, $\alpha$ is the Shepp–Walker constant from the Brownian motion analog, and $\zeta$ is Riemann’s zeta function. An $n^{ - 1/4}$ dependence was conjectured by Christensen and Fischer (2022). Our proof uses moments involving Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from backward induction, and a generalized backward induction principle. It was motivated by an idea of Häggström and Wästlund (2013) to use backward induction of upper and lower Value bounds from a horizon, which they used numerically to settle a few cases. Christensen and Fischer, with much better bounds, settled many more cases. We use Skorohod’s embedding to get simple upper and lower bounds from the Brownian analog; our upper bound is the one found by Christensen and Fischer in another way. We use them first for yet many more examples and a conjecture, then algebraically in the tree, with feedback to get much sharper Value bounds near the border, and analytic results. Also, we give a formula that gives the exact optimal stop rule for all n up to about a third of a billion; it uses the analytic result plus terms arrived at empirically.
Amdeberhan et al. [‘Arithmetic properties for generalized cubic partitions and overpartitions modulo a prime’, Aequationes Math. (2024), doi:10.1007/s00010-024-01116-7] defined the generalised cubic partition function $a_c(n)$ as the number of partitions of n whose even parts may appear in $c\geq 1$ different colours and proved that $a_3(7n+4)\equiv 0\pmod {7}$ and $a_5(11n+10)\equiv 0\pmod {11}$ for all $n\geq 0$ via modular forms. Recently, the author [‘A note on congruences for generalized cubic partitions modulo primes’, Integers25 (2025), Article no. A20] gave elementary proofs of these congruences. We prove in this note two infinite families of congruences modulo $5$ for $a_c(n)$ given by
In this work, we investigate the arithmetic properties of $b_{5^k}(n)$, which counts the partitions of n where no part is divisible by $5^k$. By constructing generating functions for $b_{5^k}(n)$ across specific arithmetic progressions, we establish a set of Ramanujan-type congruences.
Andrews and El Bachraoui [‘On two-colour partitions with odd smallest part’, Preprint, arXiv:2410.14190] explored many integer partitions in two colours, some of which are generated by the mock theta functions of third order of Ramanujan and Watson. They also posed questions regarding combinatorial proofs for these results. In this paper, we establish bijections to provide a combinatorial proof of one of these results and a companion result. We give analytic proofs of further companion results.
Inspired by work of Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23 (2019), 249–254] on the minimal excludant or ‘mex’ of partitions, we define four new classes of minimal excludants for overpartitions and establish relations to certain functions due to Ramanujan.
A pebble tree is an ordered tree where each node receives some colored pebbles, in such a way that each unary node receives at least one pebble, and each subtree has either one more or as many leaves as pebbles of each color. We show that the contraction poset on pebble trees is isomorphic to the face poset of a convex polytope called pebble tree polytope. Beside providing intriguing generalizations of the classical permutahedra and associahedra, our motivation is that the faces of the pebble tree polytopes provide realizations as convex polytopes of all assocoipahedra constructed by K. Poirier and T. Tradler only as polytopal complexes.
In his “lost notebook,” Ramanujan used iterated derivatives of two theta functions to define sequences of q-series $\{U_{2t}(q)\}$ and $\{V_{2t}(q)\}$ that he claimed to be quasimodular. We give the first explicit proof of this claim by expressing them in terms of “partition Eisenstein series,” extensions of the classical Eisenstein series $E_{2k}(q),$ defined by
For all t, we prove that $U_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _U;q)$ and $V_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _V;q),$ where $\phi _U$ and $\phi _V$ are natural partition weights, giving the first explicit quasimodular formulas for these series.
For $M,N,m\in \mathbb {N}$ with $M\geq 2, N\geq 1$ and $m \geq 2$, we define two families of sequences, $\mathcal {B}_{M,N}$ and $\mathcal {B}_{M,N,m}$. The nth term of $\mathcal {B}_{M,N}$ is obtained by expressing n in base M and recombining those digits in base N. The nth term of $\mathcal {B}_{M,N,m}$ is defined by $\mathcal {B}_{M,N,m}(n):=\mathcal {B}_{M,N}(n) \; (\textrm {mod}\;m)$. The special case $\mathcal {B}_{M,1,m}$, where $N=1$, yields the digit sum sequence $\mathbf {t}_{M,m}$ in base M mod m. We prove that $\mathcal {B}_{M,N}$ is the fixed point of a morphism $\mu _{M,N}$ at letter $0$, similar to a property of $\mathbf {t}_{M,m}$. Additionally, we show that $\mathcal {B}_{M,N,m}$ contains arbitrarily long palindromes if and only if $m=2$, mirroring the behaviour of the digit sum sequence. When $m\geq M$ and N, m are coprime, we establish that $\mathcal {B}_{M,N,m}$ contains no overlaps.
Let $\overline {M}(a,c,n)$ denote the number of overpartitions of n with first residual crank congruent to a modulo c with $c\geq 3$ being odd and $0\leq a<c$. The central objective of this paper is twofold: firstly, to establish an asymptotic formula for the crank of overpartitions; and secondly, to establish several inequalities concerning $\overline {M}(a,c,n)$ that encompasses crank differences, positivity, and strict log-subadditivity.
In his proof of the irrationality of $\zeta (3)$ and $\zeta (2)$, Apéry defined two integer sequences through $3$-term recurrences, which are known as the famous Apéry numbers. Zagier, Almkvist–Zudilin, and Cooper successively introduced the other $13$ sporadic sequences through variants of Apéry’s $3$-term recurrences. All of the $15$ sporadic sequences are called Apéry-like sequences. Motivated by Gessel’s congruences mod $24$ for the Apéry numbers, we investigate congruences of the form $u_n\equiv \alpha ^n \ \pmod {N_{\alpha }}~(\alpha \in \mathbb {Z},N_{\alpha }\in \mathbb {N}^{+})$ for all of the $15$ Apéry-like sequences $\{u_n\}_{n\ge 0}$. Let $N_{\alpha }$ be the largest positive integer such that $u_n\equiv \alpha ^n\ \pmod {N_{\alpha }}$ for all non-negative integers n. We determine the values of $\max \{N_{\alpha }|\alpha \in \mathbb {Z}\}$ for all of the $15$ Apéry-like sequences $\{u_n\}_{n\ge 0}$. The binomial transforms of Apéry-like sequences provide us a unified approach to this type of congruences for Apéry-like sequences.
A classical result of Erdős, Lovász and Spencer from the late 1970s asserts that the dimension of the feasible region of densities of graphs with at most k vertices in large graphs is equal to the number of non-trivial connected graphs with at most k vertices. Indecomposable permutations play the role of connected graphs in the realm of permutations, and Glebov et al. showed that pattern densities of indecomposable permutations are independent, i.e., the dimension of the feasible region of densities of permutation patterns of size at most k is at least the number of non-trivial indecomposable permutations of size at most k. However, this lower bound is not tight already for $k=3$. We prove that the dimension of the feasible region of densities of permutation patterns of size at most k is equal to the number of non-trivial Lyndon permutations of size at most k. The proof exploits an interplay between algebra and combinatorics inherent to the study of Lyndon words.