We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the $\ell $-adic local systems on affine spaces in characteristic $p> 0$ whose trace functions are these exponential sums. The exponential sums here are much more general than we previously were able to consider. As a byproduct, we determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces. We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines forms a ring. We consider spline rings where the underlying graph is the Cayley graph of a symmetric group generated by a collection of transpositions. These rings generalize the GKM construction for equivariant cohomology rings of flag, regular semisimple Hessenberg and permutohedral varieties. These cohomology rings carry two actions of the symmetric group $S_n$ whose graded characters are both of general interest in algebraic combinatorics. In this paper, we generalize the graded $S_n$-representations from the cohomologies of the above varieties to splines on Cayley graphs of $S_n$ and then (1) give explicit module and ring generators for whenever the $S_n$-generating set is minimal, (2) give a combinatorial characterization of when graded pieces of one $S_n$-representation is trivial, and (3) compute the first degree piece of both graded characters for all generating sets.
If all of the entries of a large $S_n$ character table are covered up and you are allowed to uncover one entry at a time, then how can you quickly identify all of the indexing characters and conjugacy classes? We present a fast algorithmic solution that works even when n is so large that almost none of the entries of the character table can be computed. The fraction of the character table that needs to be uncovered is $O( n^2 \exp({-}2\pi\sqrt{n/6}))$, and for many of these entries we are only interested in whether the entry is zero.
Continuing our work on group-theoretic generalisations of the prime Ax–Katz Theorem, we give a lower bound on the p-adic divisibility of the cardinality of the set of simultaneous zeros $Z(f_1,f_2,\dots,f_r)$ of r maps $f_j\,{:}\,A\rightarrow B_j$ between arbitrary finite commutative groups A and $B_j$ in terms of the invariant factors of $A, B_1,B_2, \cdots,B_r$ and the functional degrees of the maps $f_1,f_2, \dots,f_r$.
In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
Let G be a finite group and p be a prime. We prove that if G has three codegrees, then G is an M-group. We prove for some prime p that if the degree of every nonlinear irreducible Brauer character of G is a prime, then for every normal subgroup N of G, either $G/N$ or N is an $M_p$-group.
We describe several exotic fusion systems related to the sporadic simple groups at odd primes. More generally, we classify saturated fusion systems supported on Sylow 3-subgroups of the Conway group $\textrm{Co}_1$ and the Thompson group $\textrm{F}_3$, and a Sylow 5-subgroup of the Monster M, as well as a particular maximal subgroup of the latter two p-groups. This work is supported by computations in MAGMA.
We describe algebraically, diagrammatically, and in terms of weight vectors, the restriction of tensor powers of the standard representation of quantum $\mathfrak {sl}_2$ to a coideal subalgebra. We realize the category as a module category over the monoidal category of type $\pm 1$ representations in terms of string diagrams and via generators and relations. The idempotents projecting onto the quantized eigenspaces are described as type $B/D$ analogues of Jones–Wenzl projectors. As an application, we introduce and give recursive formulas for analogues of $\Theta$-networks.
We introduce an explicit family of representations of the double affine Hecke algebra $\mathbb {H}$ acting on spaces of quasi-polynomials, defined in terms of truncated Demazure-Lusztig type operators. We show that these quasi-polynomial representations provide concrete realisations of a natural family of cyclic Y-parabolically induced $\mathbb {H}$-representations. We recover Cherednik’s well-known polynomial representation as a special case.
The quasi-polynomial representation gives rise to a family of commuting operators acting on spaces of quasi-polynomials. These generalize the Cherednik operators, which are fundamental in the study of Macdonald polynomials. We provide a detailed study of their joint eigenfunctions, which may be regarded as quasi-polynomial, multi-parametric generalisations of nonsymmetric Macdonald polynomials. We also introduce generalizations of symmetric Macdonald polynomials, which are invariant under a multi-parametric generalization of the standard Weyl group action.
We connect our results to the representation theory of metaplectic covers of reductive groups over non-archimedean local fields. We introduce root system generalizations of the metaplectic polynomials from our previous work by taking a suitable restriction and reparametrization of the quasi-polynomial generalizations of Macdonald polynomials. We show that metaplectic Iwahori-Whittaker functions can be recovered by taking the Whittaker limit of these metaplectic polynomials.
We introduce a new algebra $\mathcal {U}=\dot {\mathrm {\mathbf{U}}}_{0,N}(L\mathfrak {sl}_n)$ called the shifted $0$-affine algebra, which emerges naturally from studying coherent sheaves on n-step partial flag varieties through natural correspondences. This algebra $\mathcal {U}$ has a similar presentation to the shifted quantum affine algebra defined by Finkelberg-Tsymbaliuk. Then, we construct a categorical $\mathcal {U}$-action on a certain 2-category arising from derived categories of coherent sheaves on n-step partial flag varieties. As an application, we construct a categorical action of the affine $0$-Hecke algebra on the bounded derived category of coherent sheaves on the full flag variety.
For a group G, a subgroup $U \leqslant G$ and a group A such that $\mathrm {Inn}(G) \leqslant A \leqslant \mathrm {Aut}(G)$, we say that U is an A-covering group of G if $G = \bigcup _{a\in A}U^a$. A theorem of Jordan (1872), implies that if G is a finite group, $A = \mathrm {Inn}(G)$ and U is an A-covering group of G, then $U = G$. Motivated by a question concerning Kronecker classes of field extensions, Neumann and Praeger (1990) conjectured that, more generally, there is an integer function f such that if G is a finite group and U is an A-covering subgroup of G, then $|G:U| \leqslant f(|A:\mathrm {Inn}(G)|)$. A key piece of evidence for this conjecture is a theorem of Praeger [‘Kronecker classes of fields and covering subgroups of finite groups’, J. Aust. Math. Soc.57 (1994), 17–34], which asserts that there is a two-variable integer function g such that if G is a finite group and U is an A-covering subgroup of G, then $|G:U|\leqslant g(|A:\mathrm {Inn}(G)|,c)$, where c is the number of A-chief factors of G. Unfortunately, the proof of this theorem contains an error. In this paper, using a different argument, we give a correct proof of the theorem.
For a finite group G, let $\operatorname { {AD}}(G)$ denote the Fourier norm of the antidiagonal in $G\times G$. The author showed recently in [‘An explicit minorant for the amenability constant of the Fourier algebra’, Int. Math. Res. Not. IMRN2023 (2023), 19390–19430] that $\operatorname { {AD}}(G)$ coincides with the amenability constant of the Fourier algebra of G and is equal to the normalized sum of the cubes of the character degrees of G. Motivated by a gap result for amenability constants from Johnson [‘Non-amenability of the Fourier algebra of a compact group’, J. Lond. Math. Soc. (2)50 (1994), 361–374], we determine exactly which numbers in the interval $[1,2]$ arise as values of $\operatorname { {AD}}(G)$. As a by-product, we show that the set of values of $\operatorname { {AD}}(G)$ does not contain all its limit points. Some other calculations or bounds for $\operatorname { {AD}}(G)$ are given for familiar classes of finite groups. We also indicate a connection between $\operatorname { {AD}}(G)$ and the commuting probability of G, and use this to show that every finite group G satisfying $\operatorname { {AD}}(G)< {61}/{15}$ must be solvable; here, the value ${61}/{15}$ is the best possible.
A classical result of Reinhold Baer states that a group G = XN, which is the product of two normal supersoluble subgroups X and N, is supersoluble if and only if Gʹ is nilpotent. This result has been weakened in [6] for a finite group G: in fact, we do not need that both X and N are normal, but only that N is normal and X permutes with every maximal subgroup of each Sylow subgroup of N.
In our paper, we improve the result mentioned above by showing that we only need X to permute with the maximal subgroups of the non-cyclic Sylow subgroups of N. Also, we extend this result (and several others) to relevant classes of infinite groups.
The central idea behind our results stems from grasping the key aspects of what happens in [6]. It turns out that tensor products play a very crucial role, and it is precisely this shift of perspective that makes it possible not only to improve those results but also extend them to infinite groups.
Let W be a group endowed with a finite set S of generators. A representation $(V,\rho )$ of W is called a reflection representation of $(W,S)$ if $\rho (s)$ is a (generalized) reflection on V for each generator $s \in S$. In this article, we prove that for any irreducible reflection representation V, all the exterior powers $\bigwedge ^d V$, $d = 0, 1, \dots , \dim V$, are irreducible W-modules, and they are non-isomorphic to each other. This extends a theorem of R. Steinberg which is stated for Euclidean reflection groups. Moreover, we prove that the exterior powers (except for the 0th and the highest power) of two non-isomorphic reflection representations always give non-isomorphic W-modules. This allows us to construct numerous pairwise non-isomorphic irreducible representations for such groups, especially for Coxeter groups.
In an earlier work, we defined a “generalised Temperley–Lieb algebra” $TL_{r, 1, n}$ corresponding to the imprimitive reflection group G(r, 1, n) as a quotient of the cyclotomic Hecke algebra. In this work we introduce the generalised Temperley–Lieb algebra $TL_{r, p, n}$ which corresponds to the complex reflection group G(r, p, n). Our definition identifies $TL_{r, p, n}$ as the fixed-point subalgebra of $TL_{r, 1, n}$ under a certain automorphism $\sigma$. We prove the cellularity of $TL_{r, p, n}$ by proving that $\sigma$ induces a special shift automorphism with respect to the cellular structure of $TL_{r, 1, n}$. We also give a description of the cell modules of $TL_{r, p, n}$ and their decomposition numbers, and finally we point to how our algebras might be categorified and could lead to a diagrammatic theory.
The minimal faithful permutation degree $\mu (G)$ of a finite group G is the least integer n such that G is isomorphic to a subgroup of the symmetric group $S_n$. If G has a normal subgroup N such that $\mu (G/N)> \mu (G)$, then G is exceptional. We prove that the proportion of exceptional groups of order $p^6$ for primes $p \geq 5$ is asymptotically zero. We identify $(11p+107)/2$ such groups and conjecture that there are no others.
We say that two nonempty subsets A and B with cardinality r of a group G are noncommuting subsets if $xy\neq yx$ for every $x\in A$ and $y\in B$. We say a nonempty set $\mathcal {X}$ of subsets with cardinality r of G is an r-noncommuting set if every two elements of $\mathcal {X}$ are noncommuting subsets. If $|\mathcal {X}| \geq |\mathcal {Y}|$ for any other r-noncommuting set $\mathcal {Y}$ of G, then the cardinality of $\mathcal {X}$ (if it exists) is denoted by $w_G(r)$ and is called the r-clique number of G. In this paper, we try to find the influence of the function $w_G: \mathbb {N} \longrightarrow \mathbb {N}$ on the structure of groups.
We give a simplified version of the proofs that, outside of their isolated vertices, the complement of the enhanced power graph and of the power graph are connected and have diameter at most $3$.
Let ${\mathcal {A}}$ be a unital ${\mathbb {F}}$-algebra and let ${\mathcal {S}}$ be a generating set of ${\mathcal {A}}$. The length of ${\mathcal {S}}$ is the smallest number k such that ${\mathcal {A}}$ equals the ${\mathbb {F}}$-linear span of all products of length at most k of elements from ${\mathcal {S}}$. The length of ${\mathcal {A}}$, denoted by $l({\mathcal {A}})$, is defined to be the maximal length of its generating sets. We show that $l({\mathcal {A}})$ does not exceed the maximum of $\dim {\mathcal {A}} / 2$ and $m({\mathcal {A}})-1$, where $m({\mathcal {A}})$ is the largest degree of the minimal polynomial among all elements of the algebra ${\mathcal {A}}$. As an application, we show that for arbitrary odd n, the length of the group algebra of the dihedral group of order $2n$ equals n.
We geometrize the mod p Satake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric mod p Hecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric mod p Hecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a mod p Local Langlands Correspondence.