To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveria showing that when s is irrational is an interval if and only if a /(1−2a) as/(1−2as) ≥ 1.
A notion of entropy for the non-singular action of finite co-ordinate changes on is introduced. This quantity-average co-ordinate or AC entropy-is calculated for product measures and G-measures. It is shown that the type III classes can be subdivided using AC entropy. An equivalence relation is established for which AC entropy is an invariant.
We define the extension of the so-called ‘martingales in the branching random walk’ in R or C to some Banach algebras B of infinite dimension and give conditions for their convergence, almost surely and in the Lp norm. This abstract approach gives conditions for the simultaneous convergence of uncountable families of such martingales constructed simultaneously in C, the idea being to consider such a family as a function-valued martingale in a Banach algebra of functions. The approach is an alternative to those of Biggins (1989), (1992) and Barral (2000), and it applies to a class of families to which the previous approach did not. We also give a result on the continuity of these multiplicative processes. Our results extend to a varying environment version of the usual construction: instead of attaching i.i.d. copies of a given random vector to the nodes of the tree ∪n≥0N+n, the distribution of the vector depends on the node in the multiplicative cascade. In this context, when B=R and in the nonnegative case, we generalize the measure on the boundary of the tree usually related to the construction; then we evaluate the dimension of this nonstatistically self-similar measure. In the self-similar case, our convergence results make it possible to simultaneously define uncountable families of such measures, and then to estimate their dimension simultaneously.
Let X be a locally convex space. Kluvánek associated to each X-valued countably additive vector measure a conical measure on X; this can also be done for finitely additive bounded vector measures. We prove that every conical measure u on X, whose associated zonoform Ku is contained in X, is associated to a bounded additive vector measure σ(u) defined on X, and satisfying σ(u)(H) ∈ H, for every finite intersection H of closed half-spaces. When X is a complete weak space, we prove that σ(u) is countably additive. This allows us to recover two results of Kluvánek: for any X, every conical measure u on it with Ku ⊆ X is associated to a countably additive X-valued vector measure; and every conical measure on a complete weak space is localizable. When X is a Banach space, we prove that σ(u) is countably additive if and only if u is the conical measure associated to a Pettis differentiable vector measure.
New metrics are introduced in the space of random measures and are applied, with various modifications of the contraction method, to prove existence and uniqueness results for self-similar random fractal measures. We obtain exponential convergence, both in distribution and almost surely, of an iterative sequence of random measures (defined by means of the scaling operator) to a unique self-similar random measure. The assumptions are quite weak, and correspond to similar conditions in the deterministic case.
The fixed mass case is handled in a direct way based on regularity properties of the metrics and the properties of a natural probability space. Proving convergence in the random mass case needs additional tools, such as a specially adapted choice of the space of random measures and of the space of probability distributions on measures, the introduction of reweighted sequences of random measures and a comparison technique.
The Newhouse gap lemma is generalized by finding a geometric condition which ensures that N-fold sums of compact sets, which might even have thickness zero, are intervals. A new proof is also obtained of a lower bound on the thickness of the sum of two Cantor sets.
The key result of this paper proves the existence of functions ρn(h) for which, whenever H is a (Lebesgue) measurable subset of the n-dimensional unit cube In with measure |H| > h and ℛ is a class of subintervals (n-dimensional axis-parallel rectangles) of In that covers H, then there exists an interval R∈ℛ in which the density of H is greater than ρn(h); that is, |H∩R|/|R|>ρn (h) (=(h/2n)2). It is shown how to use this result to find 4 points of a measurable subset of the unit square which are the vertices of an axis-parallel rectangle that has quite large intersection with the original set. Density and covering properties of classes of subsets of ℝn are introduced and investigated. As a consequence, a covering property of the class of intervals of ℝn is obtained: if ℛ is a family of n-dimensional intervals with , then there is a finite sequence R1, …, Rm∈ℛ such that and .
Methods are used from descriptive set theory to derive Fubinilike results for the very general Method I and Method II (outer) measure constructions. Such constructions, which often lead to non-σ-finite measures, include Carathéodory and Hausdorff-type measures. Several questions of independent interest are encountered, such as the measurability of measures of sections of sets, the decomposition of sets into subsets with good sectional properties, and the analyticity of certain operators over sets. Applications are indicated to Hausdorff and generalized Hausdorff measures and to packing dimensions.
A central limit theorem is established for additive functions of a Markov chain that can be constructed as an iterated random function. The result goes beyond earlier work by relaxing the continuity conditions imposed on the additive function, and by relaxing moment conditions related to the random function. It is illustrated by an application to a Markov chain related to fractals.
A (countably) compact measure is one which is inner regular with respect to a (countably) compact class of sets. This note characterizes compact probability measures in terms of the representation of Boolean homomorphisms of their measure algebras, and shows that the same ideas can be used to give a direct proof of J. Pachl's theorem that any image measure of a countably compact measure is again countably compact.
Questions of Haight and of Weizsäcker are answered in the following result. There exists a measurable function f: (0, + ∞) → {0,1} and two non-empty intervals IFI∞⊂[½,1) such that Σ∞n = 1f(nx) = +∞ for everyx εI∞, and Σ∞n = 1f(nx) >+∞ for almost every xεIf. The function f may be taken to be the characteristic function of an open set E.
Let Tβ be the β-transformation on [0, 1). When β is an integer Tβ is ergodic with respect to Lebesgue measure and almost all orbits {} are uniformly distributed. Here we consider the non-integer case, determine when Tα, Tβ have the same invariant measure and when (appropriately normalised) orbits are uniformly distributed.
An n-hedral tiling of ℝd is a tiling with each tile congruent to one of the n distinct sets. In this paper, we use the iterated function systems (IFS) to generate n-hedral tilings of ℝd. Each tile in the tiling is similar to the attractor of the IFS. These tiles are fractals and their boundaries have the Hausdorff dimension less than d. Our results generalize a result of Bandt.
Let X1, X2,… be i.i.d. random points in ℝ2 with distribution ν, and let Nn denote the number of points spanning the convex hull of X1, X2,…,Xn. We obtain lim infn→∞E(Nn)n-1/3 ≥ γ1 and E(Nn) ≤ γ2n1/3(logn)2/3 for some positive constants γ1, γ2 and sufficiently large n under the assumption that ν is a certain self-similar measure on the unit disk. Our main tool consists in a geometric application of the renewal theorem. Exactly the same approach can be adopted to prove the analogous result in ℝd.
This paper introduces a new stochastic process in which the iterates of a dynamical system evolving in discrete time coincide with the events of a Poisson process. The autocovariance function of the stochastic process is studied and a necessary and sufficient condition for it to vanish is deduced. It is shown that the mean function of this process comprises a continuous-time semidynamical system if the underlying dynamical map is linear. The flow of probability density functions generated by the stochastic process is analysed in detail, and the relationship between the flow and the solutions of the linear Boltzmann equation is investigated. It is shown that the flow is a semigroup if and only if the point process defining the stochastic process is Poisson, thereby providing a new characterization of the Poisson process.
We give some explicit constructions of type III product measures with various properties, resolving some conjectures of Brown, Dooley and Lake. We also define a family of Markov odometers of type III0 and show that the associated flow is approximately transitive.
Let m and n be integers with 0<m<n and let μ be a Radon measure on ℝn with compact support. For the Hausdorff dimension, dimH, of sections of measures we have the following equality: for almost all (n − m)-dimensional linear subspaces V
provided that dimH μ > m. Here μv,a is the sliced measure and V⊥ is the orthogonal complement of V. If the (m + d)-energy of the measure μ is finite for some d>0, then for almost all (n − m)-dimensional linear subspaces V we have
The relationship between the topological dimension of a separable metric space and the Hausdorff dimensions of its homeomorphic images has been known for some time. In this note we consider topological and packing dimensions, and show that if X is a separable metric space, then
where and denote the topological and packing dimensions of X, respectively.