We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Colmez [Périodes des variétés abéliennes a multiplication complexe, Ann. of Math. (2)138(3) (1993), 625–683; available at http://www.math.jussieu.fr/∼colmez] conjectured a product formula for periods of abelian varieties over number fields with complex multiplication and proved it in some cases. His conjecture is equivalent to a formula for the Faltings height of CM abelian varieties in terms of the logarithmic derivatives at $s=0$ of certain Artin $L$-functions. In a series of articles we investigate the analog of Colmez’s theory in the arithmetic of function fields. There abelian varieties are replaced by Drinfeld modules and their higher-dimensional generalizations, so-called $A$-motives. In the present article we prove the product formula for the Carlitz module and we compute the valuations of the periods of a CM $A$-motive at all finite places in terms of Artin $L$-series. The latter is achieved by investigating the local shtukas associated with the $A$-motive.
Given a global field $K$ and a positive integer $n$, we present a diophantine criterion for a polynomial in one variable of degree $n$ over $K$ not to have a root in $K$. This strengthens a result by Colliot-Thélène and Van Geel [Compositio Math. 151 (2015), 1965–1980] stating that the set of non-$n$th powers in a number field $K$ is diophantine. We also deduce a diophantine criterion for a polynomial over $K$ of given degree in a given number of variables to be irreducible. Our approach is based on a generalisation of the quaternion method used by Poonen and Koenigsmann for first-order definitions of $\mathbb{Z}$ in $\mathbb{Q}$.
We construct the $\unicode[STIX]{x1D6EC}$-adic crystalline and Dieudonné analogues of Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology, and employ integral $p$-adic Hodge theory to prove $\unicode[STIX]{x1D6EC}$-adic comparison isomorphisms between these cohomologies and the $\unicode[STIX]{x1D6EC}$-adic de Rham cohomology studied in Cais [The geometry of Hida families I:$\unicode[STIX]{x1D6EC}$-adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s $\unicode[STIX]{x1D6EC}$-adic étale cohomology. As applications of our work, we provide a ‘cohomological’ construction of the family of $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules attached to Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology by Dee [$\unicode[STIX]{x1D6F7}$–$\unicode[STIX]{x1D6E4}$modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we give a new and purely geometric proof of Hida’s finiteness and control theorems. We also prove suitable $\unicode[STIX]{x1D6EC}$-adic duality theorems for each of the cohomologies we construct.
We prove an equidistribution theorem for a family of holomorphic Siegel cusp forms for $\mathit{GSp}_{4}/\mathbb{Q}$ in various aspects. A main tool is Arthur’s invariant trace formula. While Shin [Automorphic Plancherel density theorem, Israel J. Math.192(1) (2012), 83–120] and Shin–Templier [Sato–Tate theorem for families and low-lying zeros of automorphic $L$-functions, Invent. Math.203(1) (2016) 1–177] used Euler–Poincaré functions at infinity in the formula, we use a pseudo-coefficient of a holomorphic discrete series to extract holomorphic Siegel cusp forms. Then the non-semisimple contributions arise from the geometric side, and this provides new second main terms $A,B_{1}$ in Theorem 1.1 which have not been studied and a mysterious second term $B_{2}$ also appears in the second main term coming from the semisimple elements. Furthermore our explicit study enables us to treat more general aspects in the weight. We also give several applications including the vertical Sato–Tate theorem, the unboundedness of Hecke fields and low-lying zeros for degree 4 spinor $L$-functions and degree 5 standard $L$-functions of holomorphic Siegel cusp forms.
In the paper, we provide an effective criterion for the Lipschitz equivalence of two-branch Cantor sets and three-branch Cantor sets by studying the irreducibility of polynomials. We also find that any two Cantor sets are Lipschitz equivalent if and only if their contraction vectors are equivalent provided one of the contraction vectors is homogeneous.
This is an addendum to a recent paper by Zaïmi, Bertin and Aljouiee [‘On number fields without a unit primitive element’, Bull. Aust. Math. Soc.93 (2016), 420–432], giving the answer to a question asked in that paper, together with some historical connections.
For any integer $m\neq 0$, we prove that $f(x)=x^{9}+9mx^{6}+192m^{3}$ is irreducible over $\mathbb{Q}$ and that the Galois group of $f(x)$ over $\mathbb{Q}$ is the dihedral group of order 18. Moreover, we show that for infinitely many values of $m$, the splitting fields for $f(x)$ are distinct.
For any odd prime $\ell$, let $h_{\ell }(-d)$ denote the $\ell$-part of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. Nontrivial pointwise upper bounds are known only for $\ell =3$; nontrivial upper bounds for averages of $h_{\ell }(-d)$ have previously been known only for $\ell =3,5$. In this paper we prove nontrivial upper bounds for the average of $h_{\ell }(-d)$ for all primes $\ell \geqslant 7$, as well as nontrivial upper bounds for certain higher moments for all primes $\ell \geqslant 3$.
Let $K=\mathbb{F}_{q}(T)$ and $A=\mathbb{F}_{q}[T]$. Suppose that $\unicode[STIX]{x1D719}$ is a Drinfeld $A$-module of rank $2$ over $K$ which does not have complex multiplication. We obtain an explicit upper bound (dependent on $\unicode[STIX]{x1D719}$) on the degree of primes ${\wp}$ of $K$ such that the image of the Galois representation on the ${\wp}$-torsion points of $\unicode[STIX]{x1D719}$ is not surjective, in the case of $q$ odd. Our results are a Drinfeld module analogue of Serre’s explicit large image results for the Galois representations on $p$-torsion points of elliptic curves (Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331; Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Etudes Sci. Publ. Math. 54 (1981), 323–401.) and are unconditional because the generalized Riemann hypothesis for function fields holds. An explicit isogeny theorem for Drinfeld $A$-modules of rank $2$ over $K$ is also proven.
We classify all polynomials $P(X)\in \mathbb{Q}[X]$ with rational coefficients having the property that the quotient $(\unicode[STIX]{x1D706}_{i}-\unicode[STIX]{x1D706}_{j})/(\unicode[STIX]{x1D706}_{k}-\unicode[STIX]{x1D706}_{\ell })$ is a rational number for all quadruples of roots $(\unicode[STIX]{x1D706}_{i},\unicode[STIX]{x1D706}_{j},\unicode[STIX]{x1D706}_{k},\unicode[STIX]{x1D706}_{\ell })$ with $\unicode[STIX]{x1D706}_{k}\neq \unicode[STIX]{x1D706}_{\ell }$.
Boston, Bush and Hajir have developed heuristics, extending the Cohen–Lenstra heuristics, that conjecture the distribution of the Galois groups of the maximal unramified pro-$p$ extensions of imaginary quadratic number fields for $p$ an odd prime. In this paper, we find the moments of their proposed distribution, and further prove there is a unique distribution with those moments. Further, we show that in the function field analog, for imaginary quadratic extensions of $\mathbb{F}_{q}(t)$, the Galois groups of the maximal unramified pro-$p$ extensions, as $q\rightarrow \infty$, have the moments predicted by the Boston, Bush and Hajir heuristics. In fact, we determine the moments of the Galois groups of the maximal unramified pro-odd extensions of imaginary quadratic function fields, leading to a conjecture on Galois groups of the maximal unramified pro-odd extensions of imaginary quadratic number fields.
We generate ray-class fields over imaginary quadratic fields in terms of Siegel–Ramachandra invariants, which are an extension of a result of Schertz. By making use of quotients of Siegel–Ramachandra invariants we also construct ray-class invariants over imaginary quadratic fields whose minimal polynomials have relatively small coefficients, from which we are able to solve certain quadratic Diophantine equations.
Let $K$ be a number field with ring of integers $\mathbb{Z}_{K}$. We prove two asymptotic formulas connected with the distribution of irreducible elements in $\mathbb{Z}_{K}$. First, we estimate the maximum number of nonassociated irreducibles dividing a nonzero element of $\mathbb{Z}_{K}$ of norm not exceeding $x$ (in absolute value), as $x\rightarrow \infty$. Second, we count the number of irreducible elements of $\mathbb{Z}_{K}$ of norm not exceeding $x$ lying in a given arithmetic progression (again, as $x\rightarrow \infty$). When $K=\mathbb{Q}$, both results are classical; a new feature in the general case is the influence of combinatorial properties of the class group of $K$.
In Ramsey theory one wishes to know how large a collection of objects can be while avoiding a particular substructure. A problem of recent interest has been to study how large subsets of the natural numbers can be while avoiding three-term geometric progressions. Building on recent progress on this problem, we consider the analogous problem over quadratic number fields. We first construct high-density subsets of the algebraic integers of an imaginary quadratic number field that avoid three-term geometric progressions. When unique factorization fails, or over a real quadratic number field, we instead look at subsets of ideals of the ring of integers. Our approach here is to construct sets ‘greedily’, a generalization of the greedy set of rational integers considered by Rankin. We then describe the densities of these sets in terms of values of the Dedekind zeta function. Next, we consider geometric-progression-free sets with large upper density. We generalize an argument by Riddell to obtain upper bounds for the upper density of geometric-progression-free subsets, and construct sets avoiding geometric progressions with high upper density to obtain lower bounds for the supremum of the upper density of all such subsets. Both arguments depend critically on the elements with small norm in the ring of integers.
We develop a theory of commensurability of groups, of rings, and of modules. It allows us, in certain cases, to compare sizes of automorphism groups of modules, even when those are infinite. This work is motivated by the Cohen–Lenstra heuristics on class groups.
In 2013, Weintraub gave a generalization of the classical Eisenstein irreducibility criterion in an attempt to correct a false claim made by Eisenstein. Using a different approach, we prove Weintraub's result with a weaker hypothesis in a more general setup that leads to an extension of the generalized Schönemann irreducibility criterion for polynomials with coefficients in arbitrary valued fields.
We prove the analog of Cramér’s short intervals theorem for primes in arithmetic progressions and prime ideals, under the relevant Riemann hypothesis. Both results are uniform in the data of the underlying structure. Our approach is based mainly on the inertia property of the counting functions of primes and prime ideals.
Since its introduction in 2010 by Lyubashevsky, Peikert and Regev, the ring learning with errors problem (ring-LWE) has become a popular building block for cryptographic primitives, due to its great versatility and its hardness proof consisting of a (quantum) reduction from ideal lattice problems. But, for a given modulus $q$ and degree $n$ number field $K$, generating ring-LWE samples can be perceived as cumbersome, because the secret keys have to be taken from the reduction mod $q$ of a certain fractional ideal ${\mathcal{O}}_{K}^{\vee }\subset K$ called the codifferent or ‘dual’, rather than from the ring of integers ${\mathcal{O}}_{K}$ itself. This has led to various non-dual variants of ring-LWE, in which one compensates for the non-duality by scaling up the errors. We give a comparison of these versions, and revisit some unfortunate choices that have been made in the recent literature, one of which is scaling up by ${|\unicode[STIX]{x1D6E5}_{K}|}^{1/2n}$ with $\unicode[STIX]{x1D6E5}_{K}$ the discriminant of $K$. As a main result, we provide, for any $\unicode[STIX]{x1D700}>0$, a family of number fields $K$ for which this variant of ring-LWE can be broken easily as soon as the errors are scaled up by ${|\unicode[STIX]{x1D6E5}_{K}|}^{(1-\unicode[STIX]{x1D700})/n}$.
In this paper we describe how to compute smallest monic polynomials that define a given number field $\mathbb{K}$. We make use of the one-to-one correspondence between monic defining polynomials of $\mathbb{K}$ and algebraic integers that generate $\mathbb{K}$. Thus, a smallest polynomial corresponds to a vector in the lattice of integers of $\mathbb{K}$ and this vector is short in some sense. The main idea is to consider weighted coordinates for the vectors of the lattice of integers of $\mathbb{K}$. This allows us to find the desired polynomial by enumerating short vectors in these weighted lattices. In the context of the subexponential algorithm of Biasse and Fieker for computing class groups, this algorithm can be used as a precomputation step that speeds up the rest of the computation. It also widens the applicability of their faster conditional method, which requires a defining polynomial of small height, to a much larger set of number field descriptions.