We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
where $(m_0, m_1, \ldots , m_v) \in \mathbb {N}^{v+1}$, $m_0 = \sum _{i=1}^{v} m_i$ and $v \ge 2$, we estimate lower and upper bounds of the supremum of the Hausdorff dimension of sets on the real line that uniformly avoid nontrivial zeros of any f in $\mathcal {G}$.
We construct an fpqc gerbe $\mathcal {E}_{\dot {V}}$ over a global function field F such that for a connected reductive group G over F with finite central subgroup Z, the set of $G_{\mathcal {E}_{\dot {V}}}$-torsors contains a subset $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G)$ which allows one to define a global notion of (Z-)rigid inner forms. There is a localization map $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G) \to H^{1}(\mathcal {E}_{v}, Z \to G)$, where the latter parametrizes local rigid inner forms (cf. [8, 6]) which allows us to organize local rigid inner forms across all places v into coherent families. Doing so enables a construction of (conjectural) global L-packets and a conjectural formula for the multiplicity of an automorphic representation $\pi $ in the discrete spectrum of G in terms of these L-packets. We also show that, for a connected reductive group G over a global function field F, the adelic transfer factor $\Delta _{\mathbb {A}}$ for the ring of adeles $\mathbb {A}$ of F serving an endoscopic datum for G decomposes as the product of the normalized local transfer factors from [6].
We consider Shimura varieties associated to a unitary group of signature $(n-s,s)$ where n is even. For these varieties, we construct smooth p-adic integral models for $s=1$ and regular p-adic integral models for $s=2$ and $s=3$ over odd primes p which ramify in the imaginary quadratic field with level subgroup at p given by the stabilizer of a $\pi $-modular lattice in the hermitian space. Our construction, which has an explicit moduli-theoretic description, is given by an explicit resolution of a corresponding local model.
We classify finite groups that act faithfully by symplectic birational transformations on an irreducible holomorphic symplectic (IHS) manifold of $OG10$ type. In particular, if X is an IHS manifold of $OG10$ type and G a finite subgroup of symplectic birational transformations of X, then the action of G on $H^2(X,\mathbb {Z})$ is conjugate to a subgroup of one of 375 groups of isometries. We prove a criterion for when such a group is determined by a group of automorphisms acting on a cubic fourfold, and apply it to our classification. Our proof is computer aided, and our results are available in a Zenodo dataset.
In the early 2000s, Ramakrishna asked the question: for the elliptic curve
\[E\;:\; y^2 = x^3 - x,\]
what is the density of primes p for which the Fourier coefficient $a_p(E)$ is a cube modulo p? As a generalisation of this question, Weston–Zaurova formulated conjectures concerning the distribution of power residues of degree m of the Fourier coefficients of elliptic curves $E/\mathbb{Q}$ with complex multiplication. In this paper, we prove the conjecture of Weston–Zaurova for cubic residues using the analytic theory of spin. Our proof works for all elliptic curves E with complex multiplication.
We construct explicit generating series of arithmetic extensions of Kudla’s special divisors on integral models of unitary Shimura varieties over CM fields with arbitrary split levels and prove that they are modular forms valued in the arithmetic Chow groups. This provides a partial solution to Kudla’s modularity problem. The main ingredient in our construction is S. Zhang’s theory of admissible arithmetic divisors. The main ingredient in the proof is an arithmetic mixed Siegel-Weil formula.
While rigorous unconditional bounds on B are known, we present the first rigorous bound on Brun’s constant under the assumption of GRH, yielding $B < 2.1594$.
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the $\ell $-adic local systems on affine spaces in characteristic $p> 0$ whose trace functions are these exponential sums. The exponential sums here are much more general than we previously were able to consider. As a byproduct, we determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces. We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
For every positive integer d, we show that there must exist an absolute constant $c \gt 0$ such that the following holds: for any integer $n \geqslant cd^{7}$ and any red-blue colouring of the one-dimensional subspaces of $\mathbb{F}_{2}^{n}$, there must exist either a d-dimensional subspace for which all of its one-dimensional subspaces get coloured red or a 2-dimensional subspace for which all of its one-dimensional subspaces get coloured blue. This answers recent questions of Nelson and Nomoto, and confirms that for any even plane binary matroid N, the class of N-free, claw-free binary matroids is polynomially $\chi$-bounded.
Our argument will proceed via a reduction to a well-studied additive combinatorics problem, originally posed by Green: given a set $A \subset \mathbb{F}_{2}^{n}$ with density $\alpha \in [0,1]$, what is the largest subspace that we can find in $A+A$? Our main contribution to the story is a new result for this problem in the regime where $1/\alpha$ is large with respect to n, which utilises ideas from the recent breakthrough paper of Kelley and Meka on sets of integers without three-term arithmetic progressions.
Let E be an elliptic curve defined over ${{\mathbb{Q}}}$ which has good ordinary reduction at the prime p. Let K be a number field with at least one complex prime which we assume to be totally imaginary if $p=2$. We prove several equivalent criteria for the validity of the $\mathfrak{M}_H(G)$-property for ${{\mathbb{Z}}}_p$-extensions other than the cyclotomic extension inside a fixed ${{\mathbb{Z}}}_p^2$-extension $K_\infty/K$. The equivalent conditions involve the growth of $\mu$-invariants of the Selmer groups over intermediate shifted ${{\mathbb{Z}}}_p$-extensions in $K_\infty$, and the boundedness of $\lambda$-invariants as one runs over ${{\mathbb{Z}}}_p$-extensions of K inside of $K_\infty$.
Using these criteria we also derive several applications. For example, we can bound the number of ${{\mathbb{Z}}}_p$-extensions of K inside $K_\infty$ over which the Mordell–Weil rank of E is not bounded, thereby proving special cases of a conjecture of Mazur. Moreover, we show that the validity of the $\mathfrak{M}_H(G)$-property sometimes can be shifted to a larger base field K′.
The cyclicity and Koblitz conjectures ask about the distribution of primes of cyclic and prime-order reduction, respectively, for elliptic curves over $\mathbb {Q}$. In 1976, Serre gave a conditional proof of the cyclicity conjecture, but the Koblitz conjecture (refined by Zywina in 2011) remains open. The conjectures are now known unconditionally “on average” due to work of Banks–Shparlinski and Balog–Cojocaru–David. Recently, there has been a growing interest in the cyclicity conjecture for primes in arithmetic progressions (AP), with relevant work by Akbal–Güloğlu and Wong. In this article, we adapt Zywina’s method to formulate the Koblitz conjecture for AP and refine a theorem of Jones to establish results on the moments of the constants in both the cyclicity and Koblitz conjectures for AP. In doing so, we uncover a somewhat counterintuitive phenomenon: On average, these two constants are oppositely biased over congruence classes. Finally, in an accompanying repository, we give Magma code for computing the constants discussed in this article.
We prove a functional transcendence theorem for the integrals of algebraic forms in families of algebraic varieties. This allows us to prove a geometric version of André’s generalization of the Grothendieck period conjecture, which we state using the formalism of Nori motives.
More precisely, we prove a version of the Ax–Schanuel conjecture for the comparison between the flat and algebraic coordinates of an arbitrary admissible graded polarizable variation of integral mixed Hodge structures. This can be seen as a generalization of the recent Ax–Schanuel theorems of [13, 18] for mixed period maps.
Given an elliptic curve $ E $ over $ \mathbb {Q} $ of analytic rank zero, its L-function can be twisted by an even primitive Dirichlet character $ \chi $ of order $ q $, and in many cases its associated special L-value $ \mathscr {L}(E, \chi ) $ is known to be integral after normalizing by certain periods. This article determines the precise value of $ \mathscr {L}(E, \chi ) $ in terms of Birch–Swinnerton-Dyer invariants when $ q = 3 $, classifies their asymptotic densities modulo $ 3 $ by fixing $ E $ and varying $ \chi $, and presents a lower bound on the $ 3 $-adic valuation of $ \mathscr {L}(E, 1) $, all of which arise from a congruence of modular symbols. These results also explain some phenomena observed by Dokchitser–Evans–Wiersema and by Kisilevsky–Nam.
We provide numerical evidence towards three conjectures on harmonic numbers by Eswarathasan, Levine and Boyd. Let $J_p$ denote the set of integers $n\geq 1$ such that the harmonic number $H_n$ is divisible by a prime p. The conjectures state that: (i) $J_p$ is always finite and of the order $O(p^2(\log \log p)^{2+\epsilon })$; (ii) the set of primes for which $J_p$ is minimal (called harmonic primes) has density $e^{-1}$ among all primes; (iii) no harmonic number is divisible by $p^4$. We prove parts (i) and (iii) for all $p\leq 16843$ with at most one exception, and enumerate harmonic primes up to $50\times 10^5$, finding a proportion close to the expected density. Our work extends previous computations by Boyd by a factor of approximately $30$ and $50$, respectively.
A partition is called a t-core if none of its hook lengths is a multiple of t. Let $a_t(n)$ denote the number of t-core partitions of n. Garvan, Kim and Stanton proved that for any $n\geq1$ and $m\geq1$, $a_t\big(t^mn-(t^2-1)/24\big)\equiv0\pmod{t^m}$, where $t\in\{5,7,11\}$. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n with t-cores. Several scholars have been subsequently investigated congruence properties modulo high powers of 5 for $A_{5,k}(n)$ with $k\in\{2,3,4\}$. In this paper, by utilizing a recurrence related to the modular equation of fifth order, we establish dozens of congruence families modulo high powers of 5 satisfied by $A_{5,k}(n)$, where $4\leq k\leq25$. Moreover, we deduce an infinite family of internal congruences modulo high powers of 5 for $A_{5,4}(n)$. In particular, we generalize greatly a recent result on a congruence family modulo high powers of 5 enjoyed by $A_{5,4}(n)$, which was proved by Saikia, Sarma and Talukdar (Indian J. Pure Appl. Math., 2024). Finally, we conjecture that there exists a similar phenomenon for $A_{5,k}(n)$ with $k\geq26$.
that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by $p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article:
• an explicit formula for $t_{k,2}$, which generalizes a theorem by Kane and Tao,
• two-sided asymptotic estimates for $t_{k,n}$ as $n\to\infty$ for a fixed $k\geqslant2$, which generalize a theorem by Shao, and
• a precise asymptotic formula for $t_{k,n}$ as $k\to\infty$ for a fixed $n\geqslant2$.
In one-dimensional Diophantine approximation, the Diophantine properties of a real number are characterized by its partial quotients, especially the growth of its large partial quotients. Notably, Kleinbock and Wadleigh [Proc. Amer. Math. Soc.146(5) (2018), 1833–1844] made a seminal contribution by linking the improvability of Dirichlet’s theorem to the growth of the product of consecutive partial quotients. In this paper, we extend the concept of Dirichlet non-improvable sets within the framework of shrinking target problems. Specifically, consider the dynamical system $([0,1), T)$ of continued fractions. Let $\{z_n\}_{n \ge 1}$ be a sequence of real numbers in $[0,1]$ and let $B> 1$. We determine the Hausdorff dimension of the following set: $ \{x\in [0,1):|T^nx-z_n||T^{n+1}x-Tz_n|<B^{-n}\text { infinitely often}\}. $
We explore the relationship between (3-isogeny induced) Selmer group of an elliptic curve and the (3 part of) the ideal class group, over certain non-abelian number fields.
The well-known $abc$-conjecture concerns triples $(a,b,c)$ of nonzero integers that are coprime and satisfy ${a+b+c=0}$. The strong n-conjecture is a generalisation to n summands where integer solutions of the equation ${a_1 + \cdots + a_n = 0}$ are considered such that the $a_i$ are pairwise coprime and satisfy a certain subsum condition. Ramaekers studied a variant of this conjecture with a slightly different set of conditions. He conjectured that in this setting the limit superior of the so-called qualities of the admissible solutions equals $1$ for any n. In this paper, we follow results of Konyagin and Browkin. We restrict to a smaller, and thus more demanding, set of solutions, and improve the known lower bounds on the limit superior: for ${n \geq 6}$ we achieve a lower bound of $\frac 54$; for odd $n \geq 5$ we even achieve $\frac 53$. In particular, Ramaekers’ conjecture is false for every ${n \ge 5}$.
Continuing our work on group-theoretic generalisations of the prime Ax–Katz Theorem, we give a lower bound on the p-adic divisibility of the cardinality of the set of simultaneous zeros $Z(f_1,f_2,\dots,f_r)$ of r maps $f_j\,{:}\,A\rightarrow B_j$ between arbitrary finite commutative groups A and $B_j$ in terms of the invariant factors of $A, B_1,B_2, \cdots,B_r$ and the functional degrees of the maps $f_1,f_2, \dots,f_r$.