We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Hawkes process is a popular candidate for researchers to model phenomena that exhibit a self-exciting nature. The classical Hawkes process assumes the excitation kernel takes an exponential form, thus suggesting that the peak excitation effect of an event is immediate and the excitation effect decays towards 0 exponentially. While the assumption of an exponential kernel makes it convenient for studying the asymptotic properties of the Hawkes process, it can be restrictive and unrealistic for modelling purposes. A variation on the classical Hawkes process is proposed where the exponential assumption on the kernel is replaced by integrability and smoothness type conditions. However, it is substantially more difficult to conduct asymptotic analysis under this setup since the intensity process is non-Markovian when the excitation kernel is non-exponential, rendering techniques for studying the asymptotics of Markov processes inappropriate. By considering the Hawkes process with a general excitation kernel as a stationary Poisson cluster process, the intensity process is shown to be ergodic. Furthermore, a parametric setup is considered, under which, by utilising the recently established ergodic property of the intensity process, consistency of the maximum likelihood estimator is demonstrated.
We initiate a study of large deviations for block model random graphs in the dense regime. Following [14], we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tail large deviations for homomorphism densities of regular graphs. We identify the existence of a ‘symmetric’ phase, where the graph, conditioned on the rare event, looks like a block model with the same block sizes as the generating graphon. In specific examples, we also identify the existence of a ‘symmetry breaking’ regime, where the conditional structure is not a block model with compatible dimensions. This identifies a ‘reentrant phase transition’ phenomenon for this problem – analogous to one established for Erdős–Rényi random graphs [13, 14]. Finally, extending the analysis of [34], we identify the precise boundary between the symmetry and symmetry breaking regimes for homomorphism densities of regular graphs and the operator norm on Erdős–Rényi bipartite graphs.
The present paper develops a unified approach when dealing with short- or long-range dependent processes with finite or infinite variance. We are concerned with the convergence rate in the strong law of large numbers (SLLN). Our main result is a Marcinkiewicz–Zygmund law of large numbers for $S_{n}(f)= \sum_{i=1}^{n}f(X_{i})$, where $\{X_i\}_{i\geq 1}$ is a real stationary Gaussian sequence and $f(\!\cdot\!)$ is a measurable function. Key technical tools in the proofs are new maximal inequalities for partial sums, which may be useful in other problems. Our results are obtained by employing truncation alongside new maximal inequalities. The result can help to differentiate the effects of long memory and heavy tails on the convergence rate for limit theorems.
Competing and complementary risk (CCR) problems are often modelled using a class of distributions of the maximum, or minimum, of a random number of independent and identically distributed random variables, called the CCR class of distributions. While CCR distributions generally do not have an easy-to-calculate density or probability mass function, two special cases, namely the Poisson–exponential and exponential–geometric distributions, can easily be calculated. Hence, it is of interest to approximate CCR distributions with these simpler distributions. In this paper, we develop Stein’s method for the CCR class of distributions to provide a general comparison method for bounding the distance between two CCR distributions, and we contrast this approach with bounds obtained using a Lindeberg argument. We detail the comparisons for Poisson–exponential, and exponential–geometric distributions.
We study convergence rates, in mean, for the Hausdorff metric between a finite set of stationary random variables and their common support, which is supposed to be a compact subset of $\mathbb{R}^d$. We propose two different approaches for this study. The first is based on the notion of a minimal index. This notion is introduced in this paper. It is in the spirit of the extremal index, which is much used in extreme value theory. The second approach is based on a $\beta$-mixing condition together with a local-type dependence assumption. More precisely, all our results concern stationary $\beta$-mixing sequences satisfying a tail condition, known as the (a, b)-standard assumption, together with a local-type dependence condition or stationary sequences satisfying the (a, b)-standard assumption and having a positive minimal index. We prove that the optimal rates of the independent and identically distributed setting can be reached. We apply our results to stationary Markov chains on a ball, or to a class of Markov chains on a circle or on a torus. We study with simulations the particular examples of a Möbius Markov chain on the unit circle and of a Markov chain on the unit square wrapped on a torus.
We develop explicit bounds for the tail of the distribution of the all-time supremum of a random walk with negative drift, where the increments have a truncated heavy-tailed distribution. As an application, we consider a ruin problem in the presence of reinsurance.
We investigate geometric properties of invariant spatio-temporal random fields $X\colon\mathbb M^d\times \mathbb R\to \mathbb R$ defined on a compact two-point homogeneous space $\mathbb M^d$ in any dimension $d\ge 2$, and evolving over time. In particular, we focus on chi-squared-distributed random fields, and study the large-time behavior (as $T\to +\infty$) of the average on [0,T] of the volume of the excursion set on the manifold, i.e. of $\lbrace X(\cdot, t)\ge u\rbrace$ (for any $u >0$). The Fourier components of X may have short or long memory in time, i.e. integrable or non-integrable temporal covariance functions. Our argument follows the approach developed in Marinucci et al. (2021) and allows us to extend their results for invariant spatio-temporal Gaussian fields on the two-dimensional unit sphere to the case of chi-squared distributed fields on two-point homogeneous spaces in any dimension. We find that both the asymptotic variance and limiting distribution, as $T\to +\infty$, of the average empirical volume turn out to be non-universal, depending on the memory parameters of the field X.
We prove an ergodic theorem for Markov chains indexed by the Ulam–Harris–Neveu tree over large subsets with arbitrary shape under two assumptions: (i) with high probability, two vertices in the large subset are far from each other, and (ii) with high probability, those two vertices have their common ancestor close to the root. The assumption on the common ancestor can be replaced by some regularity assumption on the Markov transition kernel. We verify that these assumptions are satisfied for some usual trees. Finally, with Markov chain Monte Carlo considerations in mind, we prove that when the underlying Markov chain is stationary and reversible, the Markov chain, that is the line graph, yields minimal variance for the empirical average estimator among trees with a given number of nodes. In doing so, we prove that the Hosoya–Wiener polynomial is minimized over $[{-}1,1]$ by the line graph among trees of a given size.
In this paper we derive cumulant bounds for subgraph counts and power-weighted edge lengths in a class of spatial random networks known as weight-dependent random connection models. These bounds give rise to different probabilistic results, from which we mainly focus on moderate deviations of the respective statistics, but also show a concentration inequality and a normal approximation result. This involves dealing with long-range spatial correlations induced by the profile function and the weight distribution. We start by deriving the bounds for the classical case of a Poisson vertex set, and then provide extensions to α-determinantal processes.
The Wright–Fisher model, originating in Wright (1931) is one of the canonical probabilistic models used in mathematical population genetics to study how genetic type frequencies evolve in time. In this paper we bound the rate of convergence of the stationary distribution for a finite population Wright–Fisher Markov chain with parent-independent mutation to the Dirichlet distribution. Our result improves the rate of convergence established in Gan et al. (2017) from $\mathrm{O}(1/\sqrt{N})$ to $\mathrm{O}(1/N)$. The results are derived using Stein’s method, in particular, the prelimit generator comparison method.
We show that $\alpha $-stable Lévy motions can be simulated by any ergodic and aperiodic probability-preserving transformation. Namely we show that: for $0<\alpha <1$ and every $\alpha $-stable Lévy motion ${\mathbb {W}}$, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1\leq \alpha <2$ and every symmetric $\alpha $-stable Lévy motion, there exists a function f whose partial sum process converges in distribution to ${\mathbb {W}}$; for $1< \alpha <2$ and every $-1\leq \beta \leq 1$ there exists a function f whose associated time series is in the classical domain of attraction of an $S_\alpha (\ln (2), \beta ,0)$ random variable.
In this paper, we study the asymptotic behavior of the generalized Zagreb indices of the classical Erdős–Rényi (ER) random graph G(n, p), as $n\to\infty$. For any integer $k\ge1$, we first give an expression for the kth-order generalized Zagreb index in terms of the number of star graphs of various sizes in any simple graph. The explicit formulas for the first two moments of the generalized Zagreb indices of an ER random graph are then obtained from this expression. Based on the asymptotic normality of the numbers of star graphs of various sizes, several joint limit laws are established for a finite number of generalized Zagreb indices with a phase transition for p in different regimes. Finally, we provide a necessary and sufficient condition for any single generalized Zagreb index of G(n, p) to be asymptotic normal.
We use the framework of multivariate regular variation to analyse the extremal behaviour of preferential attachment models. To this end, we follow a directed linear preferential attachment model for a random, heavy-tailed number of steps in time and treat the incoming edge count of all existing nodes as a random vector of random length. By combining martingale properties, moment bounds and a Breiman type theorem we show that the resulting quantity is multivariate regularly varying, both as a vector of fixed length formed by the edge counts of a finite number of oldest nodes, and also as a vector of random length viewed in sequence space. A Pólya urn representation allows us to explicitly describe the extremal dependence between the degrees with the help of Dirichlet distributions. As a by-product of our analysis we establish new results for almost sure convergence of the edge counts in sequence space as the number of nodes goes to infinity.
A compactness of the Revuz map is established in the sense that the locally uniform convergence of a sequence of positive continuous additive functionals (PCAFs) is derived in terms of their smooth measures. To this end, we first introduce a metric on the space of measures of finite energy integrals and show some structures of the metric. Then, we show the compactness and give some examples of PCAFs that the convergence holds in terms of the associated smooth measures.
The aim of this work is to prove a new sure upper bound in a setting that can be thought of as a simplified function field analogue. This result is comparable to a recent result of the author concerning an almost sure upper bound of random multiplicative functions. Having a simpler quantity allows us to make the proof more accessible.
We introduce the exponentially preferential recursive tree and study some properties related to the degree profile of nodes in the tree. The definition of the tree involves a radix $a\gt 0$. In a tree of size $n$ (nodes), the nodes are labeled with the numbers $1,2, \ldots ,n$. The node labeled $i$ attracts the future entrant $n+1$ with probability proportional to $a^i$.
We dedicate an early section for algorithms to generate and visualize the trees in different regimes. We study the asymptotic distribution of the outdegree of node $i$, as $n\to \infty$, and find three regimes according to whether $0 \lt a \lt 1$ (subcritical regime), $a=1$ (critical regime), or $a\gt 1$ (supercritical regime). Within any regime, there are also phases depending on a delicate interplay between $i$ and $n$, ramifying the asymptotic distribution within the regime into “early,” “intermediate” and “late” phases. In certain phases of certain regimes, we find asymptotic Gaussian laws. In certain phases of some other regimes, small oscillations in the asymototic laws are detected by the Poisson approximation techniques.
We establish a sample path moderate deviation principle for the integrated shot noise process with Poisson arrivals and non-stationary noises. As in Pang and Taqqu (2019), we assume that the noise is conditionally independent given the arrival times, and the distribution of each noise depends on its arrival time. As applications, we derive moderate deviation principles for the workload process and the running maximum process for a stochastic fluid queue with the integrated shot noise process as the input; we also show that a steady-state distribution exists and derive the exact tail asymptotics.
Let X be the sum of a diffusion process and a Lévy jump process, and for any integer $n\ge 1$ let $\phi_n$ be a function defined on $\mathbb{R}^2$ and taking values in $\mathbb{R}$, with adequate properties. We study the convergence of functionals of the type
where [x] is the integer part of the real number x and the sequences $(\Delta_n)$ and $(\alpha_n)$ tend to 0 as $n\to +\infty$. We then prove the law of large numbers and establish, in the case where $\frac{\alpha_n}{\sqrt{\Delta_n}}$ converges to a real number in $[0,+\infty)$], a new central limit theorem which generalizes that in the case where X is a continuous Itô’s semimartingale.
We consider the count of subgraphs with an arbitrary configuration of endpoints in the random-connection model based on a Poisson point process on ${\mathord{\mathbb R}}^d$. We present combinatorial expressions for the computation of the cumulants and moments of all orders of such subgraph counts, which allow us to estimate the growth of cumulants as the intensity of the underlying Poisson point process goes to infinity. As a consequence, we obtain a central limit theorem with explicit convergence rates under the Kolmogorov distance and connectivity bounds. Numerical examples are presented using a computer code in SageMath for the closed-form computation of cumulants of any order, for any type of connected subgraph, and for any configuration of endpoints in any dimension $d{\geq} 1$. In particular, graph connectivity estimates, Gram–Charlier expansions for density estimation, and correlation estimates for joint subgraph counting are obtained.
We model voting behaviour in the multi-group setting of a two-tier voting system using sequences of de Finetti measures. Our model is defined by using the de Finetti representation of a probability measure (i.e. as a mixture of conditionally independent probability measures) describing voting behaviour. The de Finetti measure describes the interaction between voters and possible outside influences on them. We assume that for each population size there is a (potentially) different de Finetti measure, and as the population grows, the sequence of de Finetti measures converges weakly to the Dirac measure at the origin, representing a tendency toward weakening social cohesion as the population grows large. The resulting model covers a wide variety of behaviours, ranging from independent voting in the limit under fast convergence, a critical convergence speed with its own pattern of behaviour, to a subcritical convergence speed which yields a model in line with empirical evidence of real-world voting data, contrary to previous probabilistic models used in the study of voting. These models can be used, e.g., to study the problem of optimal voting weights in two-tier voting systems.