To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ be a connected real semisimple Lie group, $V$ be a finite-dimensional representation of $G$ and $\mu $ be a probability measure on $G$ whose support spans a Zariski-dense subgroup. We prove that the set of ergodic $\mu $-stationary probability measures on the projective space $\mathbb{P}(V)$ is in one-to-one correspondence with the set of compact $G$-orbits in $\mathbb{P}(V)$. When $V$ is strongly irreducible, we prove the existence of limits for the empirical measures. We prove related results over local fields as the finiteness of the set of ergodic $\mu $-stationary measures on the flag variety of $G$.
We study the distribution of 2-Selmer ranks in the family of quadratic twists of an elliptic curve $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}E$ over an arbitrary number field $K$. Under the assumption that ${\rm Gal}(K(E[2])/K) \ {\cong }\ S_3$, we show that the density (counted in a nonstandard way) of twists with Selmer rank $r$ exists for all positive integers $r$, and is given via an equilibrium distribution, depending only on a single parameter (the ‘disparity’), of a certain Markov process that is itself independent of $E$ and $K$. More generally, our results also apply to $p$-Selmer ranks of twists of two-dimensional self-dual ${\bf F}_p$-representations of the absolute Galois group of $K$ by characters of order $p$.
We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler (CMH sampler). We develop conditions under which the CMH sampler will be geometrically or uniformly ergodic. We illustrate our results by analysing a CMH sampler used for drawing Bayesian inferences about the entire sample path of a diffusion process, based only upon discrete observations.
Consider the classic infinite-horizon problem of stopping a one-dimensional diffusion to optimise between running and terminal rewards, and suppose that we are given a parametrised family of such problems. We provide a general theory of parameter dependence in infinite-horizon stopping problems for which threshold strategies are optimal. The crux of the approach is a supermodularity condition which guarantees that the family of problems is indexable by a set-valued map which we call the indifference map. This map is a natural generalisation of the allocation (Gittins) index, a classical quantity in the theory of dynamic allocation. Importantly, the notion of indexability leads to a framework for inverse optimal stopping problems.
We study the one-dimensional random motion X = X(t), t ≥ 0, which takes two different velocities with two different alternating intensities. The closed-form formulae for the density functions of X and for the moments of any order, as well as the distributions of the first passage times, are obtained. The limit behaviour of the moments is analysed under nonstandard Kac's scaling.
We show that the total number of collisions in the exchangeable coalescent process driven by the beta (1, b) measure converges in distribution to a 1-stable law, as the initial number of particles goes to ∞. The stable limit law is also shown for the total branch length of the coalescent tree. These results were known previously for the instance b = 1, which corresponds to the Bolthausen-Sznitman coalescent. The approach we take is based on estimating the quality of a renewal approximation to the coalescent in terms of a suitable Wasserstein distance. Application of the method to beta (a, b)-coalescents with 0 < a < 1 leads to a simplified derivation of the known (2 - a)-stable limit. We furthermore derive asymptotic expansions for the moments of the number of collisions and of the total branch length for the beta (1, b)-coalescent by exploiting the method of sequential approximations.
A version of the contact process (effectively an SIS model) on a finite set of sites is considered in which there is the possibility of spontaneous infection. A companion process is also considered in which spontaneous infection does not occur from the disease-free state. Monotonicity with respect to parameters and initial data is established, and conditions for irreducibility and exponential convergence of the processes are given. For the spontaneous process, a set of approximating equations is derived, and its properties investigated.
In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.
In this paper a method based on a Markov chain Monte Carlo (MCMC) algorithm is proposed to compute the probability of a rare event. The conditional distribution of the underlying process given that the rare event occurs has the probability of the rare event as its normalizing constant. Using the MCMC methodology, a Markov chain is simulated, with the aforementioned conditional distribution as its invariant distribution, and information about the normalizing constant is extracted from its trajectory. The algorithm is described in full generality and applied to the problem of computing the probability that a heavy-tailed random walk exceeds a high threshold. An unbiased estimator of the reciprocal probability is constructed whose normalized variance vanishes asymptotically. The algorithm is extended to random sums and its performance is illustrated numerically and compared to existing importance sampling algorithms.
Let X, B, and Y be the Dirichlet, Bernoulli, and beta-independent random variables such that X ~ D(a0, …, ad), Pr(B = (0, …, 0, 1, 0, …, 0)) = ai / a with a = ∑i=0dai, and Y ~ β(1, a). Then, as proved by Sethuraman (1994), X ~ X(1 - Y) + BY. This gives the stationary distribution of a simple Markov chain on a tetrahedron. In this paper we introduce a new distribution on the tetrahedron called a quasi-Bernoulli distribution Bk(a0, …, ad) with k an integer such that the above result holds when B follows Bk(a0, …, ad) and when Y ~ β(k, a). We extend it even more generally to the case where X and B are random probabilities such that X is Dirichlet and B is quasi-Bernoulli. Finally, the case where the integer k is replaced by a positive number c is considered when a0 = · · · = ad = 1.
Hanski's incidence function model is one of the most widely used metapopulation models in ecology. It models the presence/absence of a species at spatially distinct habitat patches as a discrete-time Markov chain whose transition probabilities are determined by the physical landscape. In this analysis, the limiting behaviour of the model is studied as the number of patches increases and the size of the patches decreases. Two different limiting cases are identified depending on whether or not the metapopulation is initially near extinction. Basic properties of the limiting models are derived.
Exact simulation approaches for a class of diffusion bridges have recently been proposed based on rejection sampling techniques. The existing rejection sampling methods may not be practical owing to small acceptance probabilities. In this paper we propose an adaptive approach that improves the existing methods significantly under certain scenarios. The idea of the new method is based on a layered process, which can be simulated from a layered Brownian motion with reweighted layer probabilities. We will show that the new exact simulation method is more efficient than existing methods theoretically and via simulation.
We construct a flow of continuous-time and discrete-state branching processes. Some scaling limit theorems for the flow are proved, which lead to the path-valued branching processes and nonlocal branching superprocesses, over the positive half line, studied in Li (2014).
We model and study the genetic evolution and conservation of a population of diploid hermaphroditic organisms, evolving continuously in time and subject to resource competition. In the absence of mutations, the population follows a three-type, nonlinear birth-and-death process, in which birth rates are designed to integrate Mendelian reproduction. We are interested in the long-term genetic behavior of the population (adaptive dynamics), and in particular we compute the fixation probability of a slightly nonneutral allele in the absence of mutations, which involves finding the unique subpolynomial solution of a nonlinear three-dimensional recurrence relationship. This equation is simplified to a one-dimensional relationship which is proved to admit exactly one bounded solution. Adding rare mutations and rescaling time, we study the successive mutation fixations in the population, which are given by the jumps of a limiting Markov process on the genotypes space. At this time scale, we prove that the fixation rate of deleterious mutations increases with the number of already fixed mutations, which creates a vicious circle called the extinction vortex.
We characterise the class of distributions of random stochastic matrices X with the property that the products X(n)X(n − 1) · · · X(1) of independent and identically distributed copies X(k) of X converge almost surely as n → ∞ and the limit is Dirichlet distributed. This extends a result by Chamayou and Letac (1994) and is illustrated by several examples that are of interest in applications.
We pose an optimal control problem arising in a perhaps new model for retirement investing. Given a control function f and our current net worth X(t) for any t, we invest an amount f(X(t)) in the market. We need a fortune of M ‘superdollars’ to retire and want to retire as early as possible. We model our change in net worth over each infinitesimal time interval by the Itô process dX(t) = (1 + f(X(t)))dt + f(X(t))dW(t). We show how to choose the optimal f = f0 and show that the choice of f0 is optimal among all nonanticipative investment strategies, not just among Markovian ones.
We introduce a class of discrete-time stochastic processes, called disjunctive processes, which are important for reliable simulations in random iteration algorithms. Their definition requires that all possible patterns of states appear with probability 1. Sufficient conditions for nonhomogeneous chains to be disjunctive are provided. Suitable examples show that strongly mixing Markov chains and pairwise independent sequences, often employed in applications, may not be disjunctive. As a particular step towards a general theory we shall examine the problem arising when disjunctiveness is inherited under passing to a subsequence. An application to the verification problem for switched control systems is also included.
Consider a one-dimensional diffusion process on the diffusion interval I originated in x0 ∈ I. Let a(t) and b(t) be two continuous functions of t, t > t0, with bounded derivatives, a(t) < b(t), and a(t), b(t) ∈ I, for all t > t0. We study the joint distribution of the two random variables Ta and Tb, the first hitting times of the diffusion process through the two boundaries a(t) and b(t), respectively. We express the joint distribution of Ta and Tb in terms of ℙ(Ta < t, Ta < Tb) and ℙ(Tb < t, Ta > Tb), and we determine a system of integral equations verified by these last probabilities. We propose a numerical algorithm to solve this system and we prove its convergence properties. Examples and modeling motivation for this study are also discussed.
The recently introduced two-parameter infinitely-many-neutral-alleles model extends the celebrated one-parameter version (which is related to Kingman's distribution) to diffusive two-parameter Poisson-Dirichlet frequencies. In this paper we investigate the dynamics driving the species heterogeneity underlying the two-parameter model. First we show that a suitable normalization of the number of species is driven by a critical continuous-state branching process with immigration. Secondly, we provide a finite-dimensional construction of the two-parameter model, obtained by means of a sequence of Feller diffusions of Wright-Fisher flavor which feature finitely many types and inhomogeneous mutation rates. Both results provide insight into the mathematical properties and biological interpretation of the two-parameter model, showing that it is structurally different from the one-parameter case in that the frequency dynamics are driven by state-dependent rather than constant quantities.
In this paper, bounded variation control of one-dimensional diffusion processes is considered. We assume that the agent is allowed to control the diffusion only at the jump times of an observable, independent Poisson process. The agent's objective is to maximize the expected present value of the cumulative payoff generated by the controlled diffusion over its lifetime. We propose a relatively weak set of assumptions on the underlying diffusion and the instantaneous payoff structure, under which we solve the problem in closed form. Moreover, we illustrate the main results with an explicit example.