To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Coronavirus disease 2019 (COVID-19) has been described as having an overdispersed offspring distribution, i.e. high variation in the number of secondary transmissions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) per single primary COVID-19 case. Accordingly, countermeasures focused on high-risk settings and contact tracing could efficiently reduce secondary transmissions. However, as variants of concern with elevated transmissibility continue to emerge, controlling COVID-19 with such focused approaches has become difficult. It is vital to quantify temporal variations in the offspring distribution dispersibility. Here, we investigated offspring distributions for periods when the ancestral variant was still dominant (summer, 2020; wave 2) and when Alpha variant (B.1.1.7) was prevailing (spring, 2021; wave 4). The dispersion parameter (k) was estimated by analysing contact tracing data and fitting a negative binomial distribution to empirically observed offspring distributions from Nagano, Japan. The offspring distribution was less dispersed in wave 4 (k = 0.32; 95% confidence interval (CI) 0.24–0.43) than in wave 2 (k = 0.21 (95% CI 0.13–0.36)). A high proportion of household transmission was observed in wave 4, although the proportion of secondary transmissions generating more than five secondary cases did not vary over time. With this decreased variation, the effectiveness of risk group-focused interventions may be diminished.
During 6 weeks in February–March 2021, the Dutch municipal health service Utrecht studied the epidemiological effects on test incidence and the detection of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mass testing (MT). During MT, inhabitants of Bunschoten could repeatedly test regardless of symptoms and as often as desired at the close-by test facilities in the municipality. Data from the regular COVID-19 registration was used for analysis. In Bunschoten, MT caused a significant increase in test incidence and an immediate increase in the number of detected active infections, in contrast to a stabilisation in the rest of the province of Utrecht. Age distribution of test incidence shifted to the older population in Bunschoten during MT. During MT, there was a 6.8 percentage point increase in detected asymptomatic cases, a 0.4 percentage point increase in pre-symptomatic cases and a decrease of 0.5 days between onset of symptoms and test date. This study has shown that MT increases test incidence and helps to obtain a more complete view of the presence of SARS-CoV-2 in a community, which can be useful in specific situations with a defined target group or goal. However, the question remains open whether the use of MT is proportionate to the overall gain.
We consider a Lévy process Y(t) that is not continuously observed, but rather inspected at Poisson($\omega$) moments only, over an exponentially distributed time $T_\beta$ with parameter $\beta$. The focus lies on the analysis of the distribution of the running maximum at such inspection moments up to $T_\beta$, denoted by $Y_{\beta,\omega}$. Our main result is a decomposition: we derive a remarkable distributional equality that contains $Y_{\beta,\omega}$ as well as the running maximum process $\bar Y(t)$ at the exponentially distributed times $T_\beta$ and $T_{\beta+\omega}$. Concretely, $\overline{Y}(T_\beta)$ can be written as the sum of two independent random variables that are distributed as $Y_{\beta,\omega}$ and $\overline{Y}(T_{\beta+\omega})$. The distribution of $Y_{\beta,\omega}$ can be identified more explicitly in the two special cases of a spectrally positive and a spectrally negative Lévy process. As an illustrative example of the potential of our results, we show how to determine the asymptotic behavior of the bankruptcy probability in the Cramér–Lundberg insurance risk model.
Research that examines the impact of economic, social, and political factors on political corruption uses expert’ and citizen’ perceptions for measuring corruption and testing arguments. Scholars argue that the perception of corruption is a good proxy for actual corruption because data on actual corruption are limited and not entirely trustworthy. However, perception indexes do not allow for testing separate mechanisms driving citizen’ perceptions of corruption from actual levels of corruption in different government branches. To address this issue, I introduce a new index based on Latin American countries to measure the risk of corruption in political parties. Using a de jure analysis of laws and regulations, the Risk of Corruption (ROC) index evaluates the likelihood of political parties engaging in corrupt activities. Instead of measuring corrupt activities or perception directly, the ROC measures the risks of involving in corruption. The index has important implications for academics and practitioners in anti-corruption issues. First, it allows us to test arguments about the role of political parties and legislatures in reducing political corruption. Second, it helps to understand how political parties could improve their internal organization to decrease the risk of corrupt activities. Finally, it is a valuable instrument for cross-national studies in diverse fields that study political parties.
Model-based systems engineering (MBSE) aims at creating a model of a system under development, covering the complete system with a level of detail that allows to define and understand its behavior and enables to define any interface and work package based on the model. Once the model is established, further benefits can be reaped, such as the analysis of complex technical correlations within the system. Various insights can be gained by displaying the model as a formal graph and querying it. To enable such queries, a graph schema is necessary, which allows to transfer the model into a graph database. In the course of this paper, we discuss the design of a graph schema and MBSE modeling approach, enabling deep going system analysis and anomaly resolution in complex embedded systems with a focus on testing and anomaly resolution. The schema and modeling approach are designed to answer questions such as What happens if there is an electrical short in a component? Which other components are now offline and which data cannot be gathered anymore? If a component becomes unresponsive, which alternative routes can be established to obtain data processed by it. We build on the use case of qualification and operations of a small spacecraft. Structural elements of the MBSE model are transferred to a graph database where analyses are conducted on the system. The schema is implemented by means of an adapter for MagicDraw to Neo4J. A selection of complex analyses is shown in the example of the MOVE-II space mission.
While many Latin American countries have a tradition of receiving migrants, including the countries selected as case studies, there are no institutionalized mechanisms for the integration and settlement of migrants. The objective of this article is to explore how to improve migration data collection and management in a region that does not have many migration integration policies in place. I assess the state of migration data collection and management in three case studies: the city of Cucuta in Colombia, the North Huetar Region in Costa Rica, and the city of Monterrey in Mexico. The three countries publish data exclusively at the national level, rather than the local or municipal. Despite all case studies having a variety of administrative data, mainly in the form of entries and exits by nationality, these data are not enough to properly identify the sociodemographic characteristics of migrant populations in a country, and much less in specific cities. I make recommendations divided into three main themes to improve migration data in Latin America.
Does digitalization reduce corruption? What are the integrity benefits of government digitalization? While the correlation between digitalization and corruption is well established, there is less actionable evidence on the integrity dividends of specific digitalization reforms on different types of corruption and the policy channels through which they operate. These linkages are especially relevant in high corruption risk environments. This article unbundles the integrity dividends of digital reforms undertaken by governments around the world, accelerated by the pandemic. It analyzes the rise of data-driven integrity analytics as promising tools in the anticorruption space deployed by tech-savvy integrity actors. It also assesses the broader integrity benefits of the digitalization of government services and the automation of bureaucratic processes, which contribute to reducing bribe solicitation risks by front-office bureaucrats. It analyzes in particular the impact of digitalization on social transfers. It argues that government digitalization can be an implicit yet effective anticorruption strategy, with subtler yet deeper effects, but there needs to be greater synergies between digital reforms and anticorruption strategies.
Corruption has pervasive effects on economic development and the well-being of the population. Despite being crucial and necessary, fighting corruption is not an easy task because it is a difficult phenomenon to measure and detect. However, recent advances in the field of artificial intelligence may help in this quest. In this article, we propose the use of machine-learning models to predict municipality-level corruption in a developing country. Using data from disciplinary prosecutions conducted by an anti-corruption agency in Colombia, we trained four canonical models (Random Forests, Gradient Boosting Machine, Lasso, and Neural Networks), and ensemble their predictions, to predict whether or not a mayor will commit acts of corruption. Our models achieve acceptable levels of performance, based on metrics such as the precision and the area under the receiver-operating characteristic curve, demonstrating that these tools are useful in predicting where misbehavior is most likely to occur. Moreover, our feature-importance analysis shows us which groups of variables are most important in predicting corruption.
Healthcare workers (HCWs) have increased exposure and subsequent risk of infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This case-control study was conducted to investigate the contemporaneous risks associated with confirmed SARS-CoV-2 infection amongst HCWs following in-work exposure to a confirmed coronavirus disease-2019 (COVID-19) case. We assessed the influence of demographic (age, sex, nationality, high risk co-morbidities and vaccination status) and work-related factors (job role, exposure location, contact type, personal protective equipment (PPE) use) on infection risk following nosocomial SARS-CoV-2 exposure. All contact tracing records within the hospital site during waves 1–3 of the COVID-19 pandemic in Ireland were screened to identify exposure events, cases and controls. In total, 285 cases and 1526 controls were enrolled, as a result of 1811 in-work exposure events with 745 index cases. We demonstrate that male sex, Eastern European nationality, exposure location, PPE use and vaccination status all impact the likelihood of SARS-CoV-2 infection following nosocomial SARS-CoV-2 exposure. The findings draw attention to the need for continuing emphasis on PPE use and its persisting benefit in the era of COVID-19 vaccinations. We suggest that non-work-related factors may influence infection risk seen in certain ethnic groups and that infection risk in high-risk HCW roles (e.g. nursing) may be the result of repeated exposures rather than risks inherent to a single event.
Campylobacter spp. are one of the most common causes of bacterial gastroenteritis in Canada and worldwide. Fluoroquinolones are often used to treat complicated human campylobacteriosis and strains of Campylobacter spp. resistant to these drugs are emerging along the food chain. A scoping review was conducted to summarise how human (fluoro)quinolone-resistant (FQR; quinolones including fluoroquinolones) Campylobacter spp. infections are characterised in the literature by describing how burden of illness (BOI) associated with FQR is measured and reported, describing the variability in reporting of study characteristics, and providing a narrative review of literature that compare BOI measures of FQR Campylobacter spp. infections to those with susceptible infections. The review identified 26 studies that yielded many case reports, a lack of recent literature and a lack of Canadian data. Studies reported 26 different BOI measures and the most common were hospitalisation, diarrhoea, fever and duration of illness. There were mixed results as BOI measures reported in literature were inconsistently defined and there were limited comparisons between resistant and susceptible infections. This presents a challenge when attempting to assess the magnitude of the BOI due to FQR Campylobacter spp., highlighting the need for more research in this area.
In this article we introduce a simple tool to derive polynomial upper bounds for the probability of observing unusually large maximal components in some models of random graphs when considered at criticality. Specifically, we apply our method to a model of a random intersection graph, a random graph obtained through p-bond percolation on a general d-regular graph, and a model of an inhomogeneous random graph.
We consider a risk model with a counting process whose intensity is a Markovian shot-noise process, to resolve one of the disadvantages of the Cramér–Lundberg model, namely the constant intensity of the Poisson process. Due to this structure, we can apply the theory of piecewise deterministic Markov processes on a multivariate process containing the intensity and the reserve process, which allows us to identify a family of martingales. Eventually, we use change of measure techniques to derive an upper bound for the ruin probability in this model. Exploiting a recurrent structure of the shot-noise process, even the asymptotic behaviour of the ruin probability can be determined.
In this article we provide new results for the asymptotic behavior of a time-fractional birth and death process $N_{\alpha}(t)$, whose transition probabilities $\mathbb{P}[N_{\alpha}(t)=\,j\mid N_{\alpha}(0)=i]$ are governed by a time-fractional system of differential equations, under the condition that it is not killed. More specifically, we prove that the concepts of quasi-limiting distribution and quasi-stationary distribution do not coincide, which is a consequence of the long-memory nature of the process. In addition, exact formulas for the quasi-limiting distribution and its rate convergence are presented. In the first sections, we revisit the two equivalent characterizations for this process: the first one is a time-changed classic birth and death process, whereas the second one is a Markov renewal process. Finally, we apply our main theorems to the linear model originally introduced by Orsingher and Polito [23].
Let $V_{(r,n,\tilde {m}_n,k)}^{(p)}$ and $W_{(r,n,\tilde {m}_n,k)}^{(p)}$ be the $p$-spacings of generalized order statistics based on absolutely continuous distribution functions $F$ and $G$, respectively. Imposing some conditions on $F$ and $G$ and assuming that $m_1=\cdots =m_{n-1}$, Hu and Zhuang (2006. Stochastic orderings between p-spacings of generalized order statistics from two samples. Probability in the Engineering and Informational Sciences 20: 475) established $V_{(r,n,\tilde {m}_n,k)}^{(p)} \leq _{{\rm hr}} W_{(r,n,\tilde {m}_n,k)}^{(p)}$ for $p=1$ and left the case $p\geq 2$ as an open problem. In this article, we not only resolve it but also give the result for unequal $m_i$'s. It is worth mentioning that this problem has not been proved even for ordinary order statistics so far.
We provide a general purpose result for the coupling of exploration processes of random graphs, both undirected and directed, with their local weak limits when this limit is a marked Galton–Watson process. This class includes in particular the configuration model and the family of inhomogeneous random graphs with rank-1 kernel. Vertices in the graph are allowed to have attributes on a general separable metric space and can potentially influence the construction of the graph itself. The coupling holds for any fixed depth of a breadth-first exploration process.
This paper proposes a jackknife Lagrange multiplier (JLM) test for instrumental variable regression models, which is robust to (i) many instruments, where the number of instruments may increase proportionally with the sample size, (ii) arbitrarily weak instruments, and (iii) heteroskedastic errors. In contrast to Crudu, Mellace, and Sándor (2021, Econometric Theory 37, 281–310) and Mikusheva and Sun (2021, Review of Economic Studies 89, 2663–2686), who proposed jackknife Anderson–Rubin tests that are also robust to (i)–(iii), we modify a score statistic by jackknifing and construct its heteroskedasticity robust variance estimator. Compared to the Lagrange multiplier tests by Kleibergen (2002, Econometrica 70, 1781–1803) and Moreira (2001, Tests with Correct Size when Instruments Can Be Arbitrarily Weak, Working paper) and their modification for many instruments by Hansen, Hausman, and Newey (2008, Journal of Business & Economic Statistics 26, 398–422), our JLM test is robust to heteroskedastic errors and may circumvent a possible decrease in the power function. Simulation results illustrate the desirable size and power properties of the proposed method.
We present an affine-invariant random walk for drawing uniform random samples from a convex body $\mathcal{K} \subset \mathbb{R}^n$ that uses maximum-volume inscribed ellipsoids, known as John’s ellipsoids, for the proposal distribution. Our algorithm makes steps using uniform sampling from the John’s ellipsoid of the symmetrization of $\mathcal{K}$ at the current point. We show that from a warm start, the random walk mixes in ${\widetilde{O}}\!\left(n^7\right)$ steps, where the log factors hidden in the ${\widetilde{O}}$ depend only on constants associated with the warm start and desired total variation distance to uniformity. We also prove polynomial mixing bounds starting from any fixed point x such that for any chord pq of $\mathcal{K}$ containing x, $\left|\log \frac{|p-x|}{|q-x|}\right|$ is bounded above by a polynomial in n.
This paper introduces a novel Itô diffusion process to model high-frequency financial data that can accommodate low-frequency volatility dynamics by embedding the discrete-time nonlinear exponential generalized autoregressive conditional heteroskedasticity (GARCH) structure with log-integrated volatility in a continuous instantaneous volatility process. The key feature of the proposed model is that, unlike existing GARCH-Itô models, the instantaneous volatility process has a nonlinear structure, which ensures that the log-integrated volatilities have the realized GARCH structure. We call this the exponential realized GARCH-Itô model. Given the autoregressive structure of the log-integrated volatility, we propose a quasi-likelihood estimation procedure for parameter estimation and establish its asymptotic properties. We conduct a simulation study to check the finite-sample performance of the proposed model and an empirical study with 50 assets among the S&P 500 compositions. Numerical studies show the advantages of the proposed model.