To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this study, we tested the validity across two scales addressing conspiratorial thinking that may influence behaviours related to public health and the COVID-19 pandemic. Using the COVIDiSTRESSII Global Survey data from 12 261 participants, we validated the 4-item Conspiratorial Thinking Scale and 3-item Anti-Expert Sentiment Scale across 24 languages and dialects that were used by at least 100 participants per language. We employed confirmatory factor analysis, measurement invariance test and measurement alignment for internal consistency testing. To test convergent validity of the two scales, we assessed correlations with trust in seven agents related to government, science and public health. Although scalar invariance was not achieved when measurement invariance test was conducted initially, we found that both scales can be employed in further international studies with measurement alignment. Moreover, both conspiratorial thinking and anti-expert sentiments were significantly and negatively correlated with trust in all agents. Findings from this study provide supporting evidence for the validity of both scales across 24 languages for future large-scale international research.
Measles resurged in Vietnam between 2018 and 2020, especially in the Southern region. The proportion of children with measles infection showed quite some variation at the provincial level. We applied a spatio-temporal endemic–epidemic modelling framework for age-stratified infectious disease counts using measles surveillance data collected in Southern Vietnam between 1 January 2018 and 30 June 2020. We found that disease transmission within age groups was greatest in young children aged 0–4 years whereas a relatively high between-group transmission was observed in older age groups (5–14 years, 15–24 years and 25+ years groups). At the provincial level, spatial transmission followed an age-dependent distance decay with measles spread mainly depending on local and neighbouring transmission. Our study helped to clarify the measles transmission dynamics in a more detailed fashion with respect to age strata, time and space. Findings from this study may help determine proper strategies in measles outbreak control including promotion of age-targeted intervention programmes in specific areas.
The coronavirus disease 2019 (COVID-19), with new variants, continues to be a constant pandemic threat that is generating socio-economic and health issues in manifold countries. The principal goal of this study is to develop a machine learning experiment to assess the effects of vaccination on the fatality rate of the COVID-19 pandemic. Data from 192 countries are analysed to explain the phenomena under study. This new algorithm selected two targets: the number of deaths and the fatality rate. Results suggest that, based on the respective vaccination plan, the turnout in the participation in the vaccination campaign, and the doses administered, countries under study suddenly have a reduction in the fatality rate of COVID-19 precisely at the point where the cut effect is generated in the neural network. This result is significant for the international scientific community. It would demonstrate the effective impact of the vaccination campaign on the fatality rate of COVID-19, whatever the country considered. In fact, once the vaccination has started (for vaccines that require a booster, we refer to at least the first dose), the antibody response of people seems to prevent the probability of death related to COVID-19. In short, at a certain point, the fatality rate collapses with increasing doses administered. All these results here can help decisions of policymakers to prepare optimal strategies, based on effective vaccination plans, to lessen the negative effects of the COVID-19 pandemic crisis in socioeconomic and health systems.
For the measles-mumps-rubella (MMR) vaccine, the World Health Organization-recommended coverage for herd protection is 95% for measles and 80% for rubella and mumps. However, a national vaccine coverage does not reflect social clustering of unvaccinated children, e.g. in schools of Orthodox Protestant or Anthroposophic identity in The Netherlands. To fully characterise this clustering, we estimated one-dose MMR vaccination coverages at all schools in the Netherlands. By combining postcode catchment areas of schools and school feeder data, each child in the Netherlands was characterised by residential postcode, primary and secondary school (referred to as school career). Postcode-level vaccination data were used to estimate vaccination coverages per school career. These were translated to coverages per school, stratified by school identity. Most schools had vaccine coverages over 99%, but major exceptions were Orthodox Protestant schools (63% in primary and 58% in secondary schools) and Anthroposophic schools (67% and 78%). School-level vaccine coverage estimates reveal strong clustering of unvaccinated children. The school feeder data reveal strongly connected Orthodox Protestant and Anthroposophic communities, but separated from one another. This suggests that even at a national one-dose MMR coverage of 97.5%, thousands of children per cohort are not protected by herd immunity.
There is a lack of publicly available information covering the practices insurers employ to manage their exposure to reinsurance recapture risk. A working party was set-up to shed light on the different approaches insurers use to mitigate this complicated to manage risk. This report is intended to form part of a publicly available information repository that market practitioners can refer to and reflect on as best practice evolves and develops.
In this paper, we consider some dividend problems in the perturbed compound Poisson model under a constant barrier dividend strategy. We approximate the expected present value of dividend payments before ruin and the expected discounted penalty function based on the COS method, and construct some nonparametric estimators by using a random sample on claim number and individual claim sizes. Under a large sample size setting, we perform an error analysis of the estimators. We also provide some simulation results to verify the effectiveness of this estimation method when the sample size is finite.
In this paper, we study the optimal multiple stopping problem under the filtration-consistent nonlinear expectations. The reward is given by a set of random variables satisfying some appropriate assumptions, rather than a process that is right-continuous with left limits. We first construct the optimal stopping time for the single stopping problem, which is no longer given by the first hitting time of processes. We then prove by induction that the value function of the multiple stopping problem can be interpreted as the one for the single stopping problem associated with a new reward family, which allows us to construct the optimal multiple stopping times. If the reward family satisfies some strong regularity conditions, we show that the reward family and the value functions can be aggregated by some progressive processes. Hence, the optimal stopping times can be represented as hitting times.
Sensor placement optimization (SPO) is usually applied during the structural health monitoring sensor system design process to collect effective data. However, the failure of a sensor may significantly affect the expected performance of the entire system. Therefore, it is necessary to study the optimal sensor placement considering the possibility of sensor failure. In this article, the research focusses on an SPO giving a fail-safe sensor distribution, whose sub-distributions still have good performance. The performance of the fail-safe sensor distribution with multiple sensors placed in the same position will also be studied. The adopted data sets include the mode shapes and corresponding labels of structural states from a series of tests on a glider wing. A genetic algorithm is used to search for sensor deployments, and the partial results are validated by an exhaustive search. Two types of optimization objectives are investigated, one for modal identification and the other for damage identification. The results show that the proposed fail-safe sensor optimization method is beneficial for balancing the system performance before and after sensor failure.
We show that the $4$-state anti-ferromagnetic Potts model with interaction parameter $w\in (0,1)$ on the infinite $(d+1)$-regular tree has a unique Gibbs measure if $w\geq 1-\dfrac{4}{d+1_{_{\;}}}$ for all $d\geq 4$. This is tight since it is known that there are multiple Gibbs measures when $0\leq w\lt 1-\dfrac{4}{d+1}$ and $d\geq 4$. We moreover give a new proof of the uniqueness of the Gibbs measure for the $3$-state Potts model on the $(d+1)$-regular tree for $w\geq 1-\dfrac{3}{d+1}$ when $d\geq 3$ and for $w\in (0,1)$ when $d=2$.
This article considers the link removal problem in a strongly connected directed network with the goal of minimizing the dominant eigenvalue of the network’s adjacency matrix while maintaining its strong connectivity. Due to the complexity of the problem, this article focuses on computing a suboptimal solution. Furthermore, it is assumed that the knowledge of the overall network topology is not available. This calls for distributed algorithms which rely solely on the local information available to each individual node and information exchange between each node and its neighbors. Two different strategies based on matrix perturbation analysis are presented, namely simultaneous and iterative link removal strategies. Key ingredients in implementing both strategies include novel distributed algorithms for estimating the dominant eigenvectors of an adjacency matrix and for verifying strong connectivity of a directed network under link removal. It is shown via numerical simulations on different type of networks that in general the iterative link removal strategy yields a better suboptimal solution. However, it comes at a price of higher communication cost in comparison to the simultaneous link removal strategy.
The transition to open data practices is straightforward albeit surprisingly challenging to implement largely due to cultural and policy issues. A general data sharing framework is presented along with two case studies that highlight these challenges and offer practical solutions that can be adjusted depending on the type of data collected, the country in which the study is initiated, and the prevailing research culture. Embracing the constraints imposed by data privacy considerations, especially for biomedical data, must be emphasized for data outside of the United States until data privacy law(s) are established at the Federal and/or State level.
The study of threshold functions has a long history in random graph theory. It is known that the thresholds for minimum degree k, k-connectivity, as well as k-robustness coincide for a binomial random graph. In this paper we consider an inhomogeneous random graph model, which is obtained by including each possible edge independently with an individual probability. Based on an intuitive concept of neighborhood density, we show two sufficient conditions guaranteeing k-connectivity and k-robustness, respectively, which are asymptotically equivalent. Our framework sheds some light on extending uniform threshold values in homogeneous random graphs to threshold landscapes in inhomogeneous random graphs.
Numerical estimators of differential entropy and mutual information can be slow to converge as sample size increases. The offset Kozachenko–Leonenko (KLo) method described here implements an offset version of the Kozachenko–Leonenko estimator that can markedly improve convergence. Its use is illustrated in applications to the comparison of trivariate data from successive scene color images and the comparison of univariate data from stereophonic music tracks. Publicly available code for KLo estimation of both differential entropy and mutual information is provided for R, Python, and MATLAB computing environments at https://github.com/imarinfr/klo.
Matryoshka dolls, the traditional Russian nesting figurines, are known worldwide for each doll’s encapsulation of a sequence of smaller dolls. In this paper, we exploit the structure of a new sequence of nested matrices we call matryoshkan matrices in order to compute the moments of the one-dimensional polynomial processes, a large class of Markov processes. We characterize the salient properties of matryoshkan matrices that allow us to compute these moments in closed form at a specific time without computing the entire path of the process. This simplifies the computation of the polynomial process moments significantly. Through our method, we derive explicit expressions for both transient and steady-state moments of this class of Markov processes. We demonstrate the applicability of this method through explicit examples such as shot noise processes, growth–collapse processes, ephemerally self-exciting processes, and affine stochastic differential equations from the finance literature. We also show that we can derive explicit expressions for the self-exciting Hawkes process, for which finding closed-form moment expressions has been an open problem since their introduction in 1971. In general, our techniques can be used for any Markov process for which the infinitesimal generator of an arbitrary polynomial is itself a polynomial of equal or lower order.
We present a Markov chain on the n-dimensional hypercube $\{0,1\}^n$ which satisfies $t_{{\rm mix}}^{(n)}(\varepsilon) = n[1 + o(1)]$. This Markov chain alternates between random and deterministic moves, and we prove that the chain has a cutoff with a window of size at most $O(n^{0.5+\delta})$, where $\delta>0$. The deterministic moves correspond to a linear shift register.
Let $(\xi_k,\eta_k)_{k\in\mathbb{N}}$ be independent identically distributed random vectors with arbitrarily dependent positive components. We call a (globally) perturbed random walk a random sequence $T\,{:\!=}\, (T_k)_{k\in\mathbb{N}}$ defined by $T_k\,{:\!=}\, \xi_1+\cdots+\xi_{k-1}+\eta_k$ for $k\in\mathbb{N}$. Consider a general branching process generated by T and let $N_j(t)$ denote the number of the jth generation individuals with birth times $\leq t$. We treat early generations, that is, fixed generations j which do not depend on t. In this setting we prove counterparts for $\mathbb{E}N_j$ of the Blackwell theorem and the key renewal theorem, prove a strong law of large numbers for $N_j$, and find the first-order asymptotics for the variance of $N_j$. Also, we prove a functional limit theorem for the vector-valued process $(N_1(ut),\ldots, N_j(ut))_{u\geq0}$, properly normalized and centered, as $t\to\infty$. The limit is a vector-valued Gaussian process whose components are integrated Brownian motions.
The standard coalescent is widely used in evolutionary biology and population genetics to model the ancestral history of a sample of molecular sequences as a rooted and ranked binary tree. In this paper we present a representation of the space of ranked trees as a space of constrained ordered matched pairs. We use this representation to define ergodic Markov chains on labeled and unlabeled ranked tree shapes analogously to transposition chains on the space of permutations. We show that an adjacent-swap chain on labeled and unlabeled ranked tree shapes has a mixing time at least of order $n^3$, and at most of order $n^{4}$. Bayesian inference methods rely on Markov chain Monte Carlo methods on the space of trees. Thus it is important to define good Markov chains which are easy to simulate and for which rates of convergence can be studied.
In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman–Bucy filter estimates based upon several nonlinear Kalman–Bucy diffusions. Using new conditional bias results for the mean of the aforementioned methods, we analyze the empirical log-scale normalization constants in terms of their $\mathbb{L}_n$-errors and $\mathbb{L}_n$-conditional bias. Depending on the type of nonlinear Kalman–Bucy diffusion, we show that these are bounded above by terms such as $\mathsf{C}(n)\left[t^{1/2}/N^{1/2} + t/N\right]$ or $\mathsf{C}(n)/N^{1/2}$ ($\mathbb{L}_n$-errors) and $\mathsf{C}(n)\left[t+t^{1/2}\right]/N$ or $\mathsf{C}(n)/N$ ($\mathbb{L}_n$-conditional bias), where t is the time horizon, N is the ensemble size, and $\mathsf{C}(n)$ is a constant that depends only on n, not on N or t. Finally, we use these results for online static parameter estimation for the above filtering models and implement the methodology for both linear and nonlinear models.
Today’s conflicts are becoming increasingly complex, fluid, and fragmented, often involving a host of national and international actors with multiple and often divergent interests. This development poses significant challenges for conflict mediation, as mediators struggle to make sense of conflict dynamics, such as the range of conflict parties and the evolution of their political positions, the distinction between relevant and less relevant actors in peace-making, or the identification of key conflict issues and their interdependence. International peace efforts appear ill-equipped to successfully address these challenges. While technology is already being experimented with and used in a range of conflict related fields, such as conflict predicting or information gathering, less attention has been given to how technology can contribute to conflict mediation. This case study contributes to emerging research on the use of state-of-the-art machine learning technologies and techniques in conflict mediation processes. Using dialogue transcripts from peace negotiations in Yemen, this study shows how machine-learning can effectively support mediating teams by providing them with tools for knowledge management, extraction and conflict analysis. Apart from illustrating the potential of machine learning tools in conflict mediation, the article also emphasizes the importance of interdisciplinary and participatory, cocreation methodology for the development of context-sensitive and targeted tools and to ensure meaningful and responsible implementation.
We obtain series expansions of the q-scale functions of arbitrary spectrally negative Lévy processes, including processes with infinite jump activity, and use these to derive various new examples of explicit q-scale functions. Moreover, we study smoothness properties of the q-scale functions of spectrally negative Lévy processes with infinite jump activity. This complements previous results of Chan et al. (Prob. Theory Relat. Fields150, 2011) for spectrally negative Lévy processes with Gaussian component or bounded variation.