Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 8: 2D and 3D Deformable Solid Bodies

Chapter 8: 2D and 3D Deformable Solid Bodies

pp. 216-247

Authors

, University of Maryland, College Park, , University of Maryland, College Park
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Extract

In this chapter we first describe how to construct the element stiffness matrix and load vector in 2D domains. The mapping and shape functions derived in the previous chapter are introduced to express strain components in terms of nodal DOF. Extension of the finite element formulation to 3D domains is demonstrated using the eight-node hexahedron as an example. For dynamic problems, the element mass matrix can be formed by treating the inertia effect as a body force applied to the element. The global mass matrix is then assembled to construct the equation of motion for analyses of free vibration and forced vibration. In the last section, we briefly discuss important aspects of finite element modeling and analysis that often arise in 2D and 3D problems where the number of DOF can be large. We discuss issues, such as sparse matrices and mesh generation, which early students of the finite element method may find helpful for future reference.

Keywords

  • 2D solid mechanics
  • plane stress
  • plane strain
  • 3D solid mechanics
  • hexahedral elements
  • time-dependent problems
  • sparse matrices
  • mesh generation

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$100.00
Hardback
US$100.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers