Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 5: Bending under Axial Force

Chapter 5: Bending under Axial Force

pp. 138-164

Authors

, University of Maryland, College Park, , University of Maryland, College Park
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Extract

In this chapter we consider the finite element formulation for bending of slender bodies under a tensile or compressive axial force. In order to capture the effect of axial force we look at the force and moment equilibrium in the deformed configuration, but still assuming small translational displacement and rotation of the cross-section. In the finite element formulation, it is shown that the effect of axial force on bending manifests as an effective bending stiffness. It will be shown that the finite element formulation of a slender body under compressive axial force results in a matrix equation for eigenvalue analysis from which we can determine the static buckling load and the buckling mode. Subsequently, we consider the finite element formulation for vibration analysis of slender bodies to investigate the effect of axial force on the natural frequencies and modes. Finally, we introduce the finite element formulation of slender bodies subjected to a compressive follower force in which the direction of the applied force is always parallel to the body axis in the deformed configuration.

Keywords

  • buckling analysis
  • axial force
  • follower force

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$100.00
Hardback
US$100.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers