On page 113, we introduced the notion of a term-document matrix: an M × N matrix C, each of whose rows represents a term and each of whose columns represents a document in the collection. Even for a collection of modest size, the term-document matrix C is likely to have several tens of thousands of rows and columns. In Section 18.1.1, we first develop a class of operations from linear algebra, known as matrix decomposition. In Section 18.2, we use a special form of matrix decomposition to construct a low-rank approximation to the term-document matrix. In Section 18.3 we examine the application of such low-rank approximations to indexing and retrieving documents, a technique referred to as latent semantic indexing. Although latent semantic indexing has not been established as a significant force in scoring and ranking for information retrieval (IR), it remains an intriguing approach to clustering in a number of domains including for collections of text documents (Section 16.6, page 343). Understanding its full potential remains an area of active research.
Readers who do not require a refresher on linear algebra may skip Section 18.1, although Example 18.1 is especially recommended as it highlights a property of eigenvalues that we exploit later in the chapter.
Linear algebra review
We briefly review some necessary background in linear algebra. Let C be an M × N matrix with real-valued entries; for a term–document matrix, all entries are in fact non-negative.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.