Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 9: Exponential Family of Distributions

Chapter 9: Exponential Family of Distributions

pp. 332-367

Authors

, King's College London
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

The previous chapters have adopted a limited range of probabilistic models, namely Bernoulli and categorical distributions for discrete rvs and Gaussian distributions for continuous rvs. While these are common modeling choices, they clearly do not represent many important situations of interest for machine learning applications. For instance, discrete data may a priori take arbitrarily large values, making categorical models unsuitable. Continuous data may need to satisfy certain constraints, such as non-negativity, rendering Gaussian models far from ideal.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$74.00
Hardback
US$74.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers