This chapter focuses on three key problems that underlie the formulation of many machine learning methods for inference and learning, namely variational inference (VI), amortized VI, and variational expectation maximization (VEM). We have already encountered these problems in simplified forms in previous chapters, and they will be essential in developing the more advanced techniques to be covered in the rest of the book. Notably, VI and amortized VI underpin optimal Bayesian inference, which was used, e.g., in Chapter 6 to design optimal predictors for generative models; and VEM generalizes the EM algorithm that was introduced in Chapter 7 for training directed generative latent-variable models.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.