Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 8: Statistical Learning Theory

Chapter 8: Statistical Learning Theory

pp. 311-331

Authors

, King's College London
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

As introduced in Chapter 4, setting up a learning problem requires the selection of an inductive bias, which consists of a model class and a training algorithm. By the no-free-lunch theorem, this first step is essential in order to make generalization possible. A trained model generalizes if it performs well outside the training set, on average with respect to the unknown population distribution.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$74.00
Hardback
US$74.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers