Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 10: Mining Social-Network Graphs

Chapter 10: Mining Social-Network Graphs

pp. 340-409

Authors

, Stanford University, California, , Rocketship VC, , Stanford University, California
Resources available Unlock the full potential of this textbook with additional resources. There are free resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

In this chapter, we shall study techniques for analyzing social networks. An important question is how to identify “communities,” that is, subsets of the nodes (people or other entities that form the network) with unusually strong connections. Some of the techniques used to identify communities are similar to the clustering algorithms we discussed in Chapter 7. However, communities almost never partition the set of nodes in a network. Rather, communities usually overlap. For example, you may belong to several communities of friends or classmates. The people from one community tend to know each other, but people from two different communities rarely know each other. You would not want to be assigned to only one of the communities, nor would it make sense to cluster all the people from all your communities into one cluster. Also in this chapter we explore efficient algorithms for discovering other properties of graphs. We look at “simrank,” a way to discover similarities among nodes of a graph. We then explore triangle counting as a way to measure the connectedness of a community. In addition, we give efficient algorithms for exact and approximate measurement of the neighborhood sizes of nodes in a graph, and we look at efficient algorithms for computing the transitive closure.

Keywords

  • social network
  • clustering
  • betweenness
  • community
  • Laplacian matrix
  • overlapping communities
  • SimRank
  • triangle counting
  • neighborhood
  • transitive closure

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$89.00
Hardback
US$89.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers