Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 10: Brain Tissue

Chapter 10: Brain Tissue

pp. 273-301

Authors

, University of Edinburgh, , University of Stirling, , Psymetrix Limited, , Norwegian University of Life Sciences (NMBU), , University of Edinburgh
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Extract

The nervous system consists of not only neurons, but also of other cell types such as glial cells. They can be modelled using the same principles as for neurons. The extracellular space (ECS) contains ions and molecules that affect the activity of both neurons and glial cells, as does the transport of signalling molecules, oxygen and cell nutrients in the irregular ECS landscape. This chapter shows how to model such diffusive influences involving both diffusion and electrical drift. This formalism also explains the formation of dense nanometre-thick ion layers around membranes (Debye layers). When ion transport in the ECS stems from electrical drift only, this formalism reduces to the volume conductor theory, which is commonly used to model electrical potentials around cells in the ECS. Finally, the chapter outlines how to model ionic and molecular dynamics not only in the ECS, but also in the entire brain tissue comprising neurons, glial cells and blood vessels.

Keywords

  • extracellular space
  • glial cells
  • extracellular diffusion
  • extracellular potentials
  • volume conductors
  • electrodiffusion
  • liquid flow
  • osmosis

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$69.99
Hardback
US$160.00
Paperback
US$69.99

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers