The nervous system consists of not only neurons, but also of other cell types such as glial cells. They can be modelled using the same principles as for neurons. The extracellular space (ECS) contains ions and molecules that affect the activity of both neurons and glial cells, as does the transport of signalling molecules, oxygen and cell nutrients in the irregular ECS landscape. This chapter shows how to model such diffusive influences involving both diffusion and electrical drift. This formalism also explains the formation of dense nanometre-thick ion layers around membranes (Debye layers). When ion transport in the ECS stems from electrical drift only, this formalism reduces to the volume conductor theory, which is commonly used to model electrical potentials around cells in the ECS. Finally, the chapter outlines how to model ionic and molecular dynamics not only in the ECS, but also in the entire brain tissue comprising neurons, glial cells and blood vessels.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.