This chapter presents mathematical details relating to the Fourier transform (FT), Fourier series, and their inverses. These details were omitted in the preceding chapters in order to enable the reader to focus on the engineering side. The material reviewed in this chapter is fundamental and of lasting value, even though from the engineer’s viewpoint the importance may not manifest in day-to-day applications of Fourier representations. First the chapter discusses the discrete-time case, wherein two types of Fourier transform are distinguished, namely, l1-FT and l2-FT. A similar distinction between L1-FT and L2-FT for the continuous-time case is made next. When such FTs do not exist, it is still possible for a Fourier transform (or inverse) to exist in the sense of the so-called Cauchy principal value or improper Riemann integral, as explained. A detailed discussion on the pointwise convergence of the Fourier series representation is then given, wherein a number of sufficient conditions for such convergence are presented. This involves concepts such as bounded variation, one-sided derivatives, and so on. Detailed discussions of these concepts, along with several illuminating examples, are presented. The discussion is also extended to the case of the Fourier integral.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.