This chapter introduces the continuous-time Fourier transform (CTFT) and its properties. Many examples are presented to illustrate the properties. The inverse CTFT is derived. As one example of its application, the impulse response of the ideal lowpass filter is obtained. The derivative properties of the CTFT are used to derive many Fourier transform pairs. One result is that the normalized Gaussian signal is its own Fourier transform, and constitutes an eigenfunction of the Fourier transform operator. Many such eigenfunctions are presented. The relation between the smoothness of a signal in the time domain and its decay rate in the frequency domain is studied. Smooth signals have rapidly decaying Fourier transforms. Spline signals are introduced, which have provable smoothness properties in the time domain. For causal signals it is proved that the real and imaginary parts of the CTFT are related to each other. This is called the Hilbert transform, Poisson’’s transform, or the Kramers–Kronig transform. It is also shown that Mother Nature “computes” a Fourier transform when a plane wave is propagating across an aperture and impinging on a distant screen – a well-known result in optics, crystallography, and quantum physics.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.