This chapter discusses the Fourier series representation for continuous-time signals. This is applicable to signals which are either periodic or have a finite duration. The connections between the continuous-time Fourier transform (CTFT), the discrete-time Fourier transform (DTFT), and Fourier series are also explained. Properties of Fourier series are discussed and many examples presented. For real-valued signals it is shown that the Fourier series can be written as a sum of a cosine series and a sine series; examples include rectified cosines, which have applications in electric power supplies. It is shown that the basis functions used in the Fourier series representation satisfy an orthogonality property. This makes the truncated version of the Fourier representation optimal in a certain sense. The so-called principal component approximation derived from the Fourier series is also discussed. A detailed discussion of the properties of musical signals in the light of Fourier series theory is presented, and leads to a discussion of musical scales, consonance, and dissonance. Also explained is the connection between Fourier series and the function-approximation property of multilayer neural networks, used widely in machine learning. An overview of wavelet representations and the contrast with Fourier series representations is also given.
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.