Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 11: The Fourier Series

Chapter 11: The Fourier Series

pp. 458-507

Authors

, California Institute of Technology
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

This chapter discusses the Fourier series representation for continuous-time signals. This is applicable to signals which are either periodic or have a finite duration. The connections between the continuous-time Fourier transform (CTFT), the discrete-time Fourier transform (DTFT), and Fourier series are also explained. Properties of Fourier series are discussed and many examples presented. For real-valued signals it is shown that the Fourier series can be written as a sum of a cosine series and a sine series; examples include rectified cosines, which have applications in electric power supplies. It is shown that the basis functions used in the Fourier series representation satisfy an orthogonality property. This makes the truncated version of the Fourier representation optimal in a certain sense. The so-called principal component approximation derived from the Fourier series is also discussed. A detailed discussion of the properties of musical signals in the light of Fourier series theory is presented, and leads to a discussion of musical scales, consonance, and dissonance. Also explained is the connection between Fourier series and the function-approximation property of multilayer neural networks, used widely in machine learning. An overview of wavelet representations and the contrast with Fourier series representations is also given.

Keywords

  • Periodic signal
  • fundamental frequency
  • harmonics
  • musical scales
  • consonance
  • beats
  • principal components
  • multilayer neural networks
  • wavelet representation

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$84.99
Hardback
US$84.99

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers