To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The partial transposition from quantum information theory provides a new source to distill the so-called asymptotic freeness without the assumption of classical independence between random matrices. Indeed, a recent paper [10] established asymptotic freeness between partial transposes in the bipartite situation. In this paper, we prove almost sure asymptotic freeness in the general multipartite situation and establish a central limit theorem for the partial transposes.
The notion of strong 1-boundedness for finite von Neumann algebras was introduced in [Jun07b]. This framework provided a free probabilistic approach to study rigidity properties and classification of finite von Neumann algebras. In this paper, we prove that tracial von Neumann algebras with a finite Kazhdan set are strongly 1-bounded. This includes all property (T) von Neumann algebras with finite-dimensional center and group von Neumann algebras of property (T) groups. This result generalizes all the previous results in this direction due to Voiculescu, Ge, Ge-Shen, Connes-Shlyakhtenko, Jung-Shlyakhtenko, Jung and Shlyakhtenko. Our proofs are based on analysis of covering estimates of microstate spaces using an iteration technique in the spirit of Jung.
In the setting of product systems over group-embeddable monoids, we consider nuclearity of the associated Toeplitz C*-algebra in relation to nuclearity of the coefficient algebra. Our work goes beyond the known cases of single correspondences and compactly aligned product systems over right least common multiple (LCM) monoids. Specifically, given a product system over a submonoid of a group, we show, under technical assumptions, that the fixed-point algebra of the gauge action is nuclear if and only if the coefficient algebra is nuclear; when the group is amenable, we conclude that this happens if and only if the Toeplitz algebra itself is nuclear. Our main results imply that nuclearity of the Toeplitz algebra is equivalent to nuclearity of the coefficient algebra for every full product system of Hilbert bimodules over abelian monoids, over $ax+b$-monoids of integral domains and over Baumslag–Solitar monoids $BS^+(m,n)$ that admit an amenable embedding, which we provide for m and n relatively prime.
A realization is a triple, $(A,b,c)$, consisting of a $d-$tuple, $A= (A_1, \cdots , A_d )$, $d\in \mathbb {N}$, of bounded linear operators on a separable, complex Hilbert space, $\mathcal {H}$, and vectors $b,c \in \mathcal {H}$. Any such realization defines an analytic non-commutative (NC) function in an open neighbourhood of the origin, $0:= (0, \cdots , 0)$, of the NC universe of $d-$tuples of square matrices of any fixed size. For example, a univariate realization, i.e., where A is a single bounded linear operator, defines a holomorphic function of a single complex variable, z, in an open neighbourhood of the origin via the realization formula $b^{*} (I-zA)^{-1} c$.
It is well known that an NC function has a finite-dimensional realization if and only if it is a non-commutative rational function that is defined at $0$. Such finite realizations contain valuable information about the NC rational functions they generate. By extending to infinite-dimensional realizations, we construct, study and characterize more general classes of analytic NC functions. In particular, we show that an NC function is (uniformly) entire if and only if it has a jointly compact and quasinilpotent realization. Restricting our results to one variable shows that a formal Taylor series extends globally to an entire or meromorphic function in the complex plane, $\mathbb {C}$, if and only if it has a realization whose component operator is compact and quasinilpotent, or compact, respectively. This motivates our definition of the field of global (uniformly) meromorphic NC functions as the field of fractions generated by NC rational expressions in the ring of NC functions with jointly compact realizations. This definition recovers the field of meromorphic functions in $\mathbb {C}$ when restricted to one variable.
Let G be a locally compact, Hausdorff, second countable groupoid and A be a separable, $C_0(G^{(0)})$-nuclear, G-$C^*$-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from A into a separable, quotient $C^*$-algebra. Along the way, we construct the Busby invariant for G-actions.
In this paper, we initiate the study of higher rank Baumslag–Solitar (BS) semigroups and their related C*-algebras. We focus on two rather interesting classes—one is related to products of odometers and the other is related to Furstenberg’s $\times p, \times q$ conjecture. For the former class, whose C*-algebras are studied in [32], we here characterize the factoriality of the associated von Neumann algebras and further determine their types; for the latter, we obtain their canonical Cartan subalgebras. In the rank 1 case, we study a more general setting that encompasses (single-vertex) generalized BS semigroups. One of our main tools in this paper is from self-similar higher rank graphs and their C*-algebras.
We introduce a set of axioms for locally topologically ordered quantum spin systems in terms of nets of local ground state projections, and we show they are satisfied by Kitaev’s Toric Code and Levin-Wen type models. For a locally topologically ordered spin system on $\mathbb {Z}^{k}$, we define a local net of boundary algebras on $\mathbb {Z}^{k-1}$, which provides a mathematically precise algebraic description of the holographic dual of the bulk topological order. We construct a canonical quantum channel so that states on the boundary quasi-local algebra parameterize bulk-boundary states without reference to a boundary Hamiltonian. As a corollary, we obtain a new proof of a recent result of Ogata [Oga24] that the bulk cone von Neumann algebra in the Toric Code is of type $\mathrm {II}$, and we show that Levin-Wen models can have cone algebras of type $\mathrm {III}$. Finally, we argue that the braided tensor category of DHR bimodules for the net of boundary algebras characterizes the bulk topological order in (2+1)D, and can also be used to characterize the topological order of boundary states.
We extend the definition of the X-Rokhlin property to countable discrete groups and prove some permanence properties. If the action of a countable discrete group on X is free and minimal and the action of this group on the separable simple $C^*$-algebra has the X-Rokhlin property, then the reduced crossed product is simple.
We provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal {M}$ is never model complete if its direct integral decomposition contains $\mathrm {II}_1$ factors $\mathcal {N}$ such that $M_2(\mathcal {N})$ embeds into an ultrapower of $\mathcal {N}$. The proof in the case of $\mathrm {II}_1$ factors uses an explicit construction based on random matrices and quantum expanders.
We prove an analog of the disintegration theorem for tracial von Neumann algebras in the setting of elementary equivalence rather than isomorphism, showing that elementary equivalence of two direct integrals of tracial factors implies fiberwise elementary equivalence under mild, and necessary, hypotheses. This verifies a conjecture of Farah and Ghasemi. Our argument uses a continuous analog of ultraproducts where an ultrafilter on a discrete index set is replaced by a character on a commutative von Neumann algebra, which is closely related to Keisler randomizations of metric structures. We extend several essential results on ultraproducts, such as Łoś’s theorem and countable saturation, to this more general setting.
We define a notion of tracial $\mathcal {Z}$-absorption for simple not necessarily unital C*-algebras, study it systematically and prove its permanence properties. This extends the notion defined by Hirshberg and Orovitz for unital C*-algebras. The Razak-Jacelon algebra, simple nonelementary C*-algebras with tracial rank zero, and simple purely infinite C*-algebras are tracially $\mathcal {Z}$-absorbing. We obtain the first purely infinite examples of tracially $\mathcal {Z}$-absorbing C*-algebras which are not $\mathcal {Z}$-absorbing. We use techniques from reduced free products of von Neumann algebras to construct these examples. A stably finite example was given by Z. Niu and Q. Wang in 2021. We study the Cuntz semigroup of a simple tracially $\mathcal {Z}$-absorbing C*-algebra and prove that it is almost unperforated and the algebra is weakly almost divisible.
This article is the second in a series investigating cartesian closed varieties. In first of these, we showed that every non-degenerate finitary cartesian variety is a variety of sets equipped with an action by a Boolean algebra B and a monoid M which interact to form what we call a matched pair ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$. In this article, we show that such pairs ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$ are equivalent to Boolean restriction monoids and also to ample source-étale topological categories; these are generalizations of the Boolean inverse monoids and ample étale topological groupoids used to encode self-similar structures such as Cuntz and Cuntz–Krieger $C^\ast$-algebras, Leavitt path algebras, and the $C^\ast$-algebras associated with self-similar group actions. We explain and illustrate these links and begin the programme of understanding how topological and algebraic properties of such groupoids can be understood from the logical perspective of the associated varieties.
We provide a characterization of equivariant Fock covariant injective representations for product systems. We show that this characterization coincides with Nica covariance for compactly aligned product systems over right least common multiple semigroups of Kwaśniewski and Larsen and with the Toeplitz representations of a discrete monoid of Laca and Sehnem. By combining with the framework established by Katsoulis and Ramsey, we resolve the reduced Hao–Ng isomorphism problem for generalized gauge actions by discrete groups.
Let $\Omega $ be a compact subset of $\mathbb {C}$ and let A be a unital simple, separable $C^*$-algebra with stable rank one, real rank zero, and strict comparison. We show that, given a Cu-morphism ${\alpha :\mathrm { Cu}(C(\Omega ))\to \mathrm {Cu}(A)}$ with , there exists a homomorphism $\phi : C(\Omega )\to A$ such that $\mathrm {Cu}(\phi )=\alpha $. Moreover, if $K_1(A)$ is trivial, then $\phi $ is unique up to approximate unitary equivalence. We also give classification results for maps from a large class of $C^*$-algebras to A in terms of the Cuntz semigroup.
We prove that every locally compact second countable group G arises as the outer automorphism group $\operatorname{Out} M$ of a II1 factor, which was so far only known for totally disconnected groups, compact groups, and a few isolated examples. We obtain this result by proving that every locally compact second countable group is a centralizer group, a class of Polish groups that arise naturally in ergodic theory and that may all be realized as $\operatorname{Out} M$.
Let M be a von Neumann algebra, let $\varphi $ be a normal faithful state on M and let $L^p(M,\varphi )$ be the associated Haagerup noncommutative $L^p$-spaces, for $1\leq p\leq \infty $. Let $D\in L^1(M,\varphi )$ be the density of $\varphi $. Given a positive map $T\colon M\to M$ such that $\varphi \circ T\leq C_1\varphi $ for some $C_1\geq 0$, we study the boundedness of the $L^p$-extension $T_{p,\theta }\colon D^{\frac {1-\theta }{p}} MD^{\frac {\theta }{p}}\to L^p(M,\varphi )$ which maps $D^{\frac {1-\theta }{p}} x D^{\frac {\theta }{p}}$ to $D^{\frac {1-\theta }{p}} T(x) D^{\frac {\theta }{p}}$ for all $x\in M$. Haagerup–Junge–Xu showed that $T_{p,{\frac {1}{2}}}$ is always bounded and left open the question whether $T_{p,\theta }$ is bounded for $\theta \not ={\frac {1}{2}}$. We show that for any $1\leq p<2$ and any $\theta \in [0, 2^{-1}(1-\sqrt {p-1})]\cup [2^{-1}(1+\sqrt {p-1}), 1]$, there exists a completely positive T such that $T_{p,\theta }$ is unbounded. We also show that if T is $2$-positive, then $T_{p,\theta }$ is bounded provided that $p\geq 2$ or $1\leq p<2$ and $\theta \in [1-p/2,p/2]$.
A Schur multiplier is a linear map on matrices which acts on its entries by multiplication with some function, called the symbol. We consider idempotent Schur multipliers, whose symbols are indicator functions of smooth Euclidean domains. Given $1<p\neq 2<\infty $, we provide a local characterization (under some mild transversality condition) for the boundedness on Schatten p-classes of Schur idempotents in terms of a lax notion of boundary flatness. We prove in particular that all Schur idempotents are modeled on a single fundamental example: the triangular projection. As an application, we fully characterize the local $L_p$-boundedness of smooth Fourier idempotents on connected Lie groups. They are all modeled on one of three fundamental examples: the classical Hilbert transform and two new examples of Hilbert transforms that we call affine and projective. Our results in this paper are vast noncommutative generalizations of Fefferman’s celebrated ball multiplier theorem. They confirm the intuition that Schur multipliers share profound similarities with Euclidean Fourier multipliers – even in the lack of a Fourier transform connection – and complete, for Lie groups, a longstanding search of Fourier $L_p$-idempotents.
We write arbitrary separable nuclear $\mathrm {C}^*$-algebras as limits of inductive systems of finite-dimensional $\mathrm {C}^*$-algebras with completely positive connecting maps. The characteristic feature of such ${\mathrm {CPC}^*}$-systems is that the maps become more and more orthogonality preserving. This condition makes it possible to equip the limit, a priori only an operator space, with a multiplication turning it into a $\mathrm {C}^*$-algebra. Our concept generalizes the NF systems of Blackadar and Kirchberg beyond the quasidiagonal case.
The concept of stability has proved very useful in the field of Banach space geometry. In this note, we introduce and study a corresponding concept in the setting of Banach algebras, which we call multiplicative stability. As we shall prove, various interesting examples of Banach algebras are multiplicatively unstable, and hence unstable in the model-theoretic sense. The examples include Fourier algebras over noncompact amenable groups, $C^*$-algebras and the measure algebra of an infinite compact group.
We compute the large size limit of the moment formula derived in [14] for the Hermitian Jacobi process at fixed time. Our computations rely on the polynomial division algorithm which allows to obtain cancellations similar to those obtained in [3, Lemma 3]. In particular, we identify the terms contributing to the limit and show they satisfy a double recurrence relation. We also determine explicitly some of them and revisit a special case relying on Carlitz summation identity for terminating $1$-balanced ${}_4F_3$ functions taken at unity.