To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the present notes, we study a generalization of the Peterson subalgebra to an oriented (generalized) cohomology theory which we call the formal Peterson subalgebra. Observe that by recent results of Zhong the dual of the formal Peterson algebra provides an algebraic model for the oriented cohomology of the affine Grassmannian.
Our first result shows that the centre of the formal affine Demazure algebra (FADA) generates the formal Peterson subalgebra. Our second observation is motivated by the Peterson conjecture. We show that a certain localization of the formal Peterson subalgebra for the extended Dynkin diagram of type $\hat A_1$ provides an algebraic model for “quantum” oriented cohomology of the projective line. Our last result can be viewed as an extension of the previous results on Hopf algebroids of structure algebras of moment graphs to the case of affine root systems. We prove that the dual of the formal Peterson subalgebra (an oriented cohomology of the affine Grassmannian) is the zeroth Hochschild homology of the FADA.
Let S and T be smooth projective varieties over an algebraically closed field k. Suppose that S is a surface admitting a decomposition of the diagonal. We show that, away from the characteristic of k, if an algebraic correspondence $T \to S$ acts trivially on the unramified cohomology, then it acts trivially on any normalized, birational and motivic functor. This generalizes Kahn’s result on the torsion order of S. We also exhibit an example of S over $\mathbb {C}$ for which $S \times S$ violates the integral Hodge conjecture.
We describe the modulo $2$ de Rham-Witt complex of a field of characteristic $2$, in terms of the powers of the augmentation ideal of the $\mathbb {Z}/2$-geometric fixed points of real topological restriction homology ${\mathrm {TRR}}$. This is analogous to the conjecture of Milnor, proved in [Kat82] for fields of characteristic $2$, which describes the modulo $2$ Milnor K-theory in terms of the powers of the augmentation ideal of the Witt group of symmetric forms. Our proof provides a somewhat explicit description of these objects, as well as a calculation of the homotopy groups of the geometric fixed points of ${\mathrm {TRR}}$ and of real topological cyclic homology, for all fields.
We show that the fundamental groups of smooth $4$-manifolds that admit geometric decompositions in the sense of Thurston have asymptotic dimension at most four, and equal to four when aspherical. We also show that closed $3$-manifold groups have asymptotic dimension at most three. Our proof method yields that the asymptotic dimension of closed $3$-dimensional Alexandrov spaces is at most three. Thus, we obtain that the Novikov conjecture holds for closed $4$-manifolds with such a geometric decomposition and for closed $3$-dimensional Alexandrov spaces. Consequences of these results include a vanishing result for the Yamabe invariant of certain $0$-surgered geometric $4$-manifolds and the existence of zero in the spectrum of aspherical smooth $4$-manifolds with a geometric decomposition.
We prove a theorem that computes, for any augmented operad $\mathcal{O}$, the stable homology of the Lie algebra of derivations of the free algebra $\mathcal{O}(V)$ with twisted bivariant coefficients (here stabilization occurs as $\dim(V)\to\infty$) out of the homology of the wheeled bar construction of $\mathcal{O}$; this can further be used to prove uniform mixed representation stability for the homology of the positive part of that Lie algebra with constant coefficients. This result generalizes both the Loday–Quillen–Tsygan theorem on the homology of the Lie algebra of infinite matrices and the Fuchs stability theorem for the homology of the Lie algebra of vector fields. We also prove analogous theorems for the Lie algebras of derivations with constant and zero divergence, in which case one has to consider the wheeled bar construction of the wheeled completion of $\mathcal{O}$. Similarly to how cyclic homology of an algebra A may be viewed as an additive version of the algebraic K-theory of A, our results hint at the additive K-theoretic nature of the wheeled bar construction.
Let F be a non-archimedean locally compact field of residual characteristic p, let $G=\operatorname {GL}_{r}(F)$ and let $\widetilde {G}$ be an n-fold metaplectic cover of G with $\operatorname {gcd}(n,p)=1$. We study the category $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ of complex smooth representations of $\widetilde {G}$ having inertial equivalence class $\mathfrak {s}=(\widetilde {M},\mathcal {O})$, which is a block of the category $\operatorname {Rep}(\widetilde {G})$, following the ‘type theoretical’ strategy of Bushnell-Kutzko.
Precisely, first we construct a ‘maximal simple type’ $(\widetilde {J_{M}},\widetilde {\lambda }_{M})$ of $\widetilde {M}$ as an $\mathfrak {s}_{M}$-type, where $\mathfrak {s}_{M}=(\widetilde {M},\mathcal {O})$ is the related cuspidal inertial equivalence class of $\widetilde {M}$. Along the way, we prove the folklore conjecture that every cuspidal representation of $\widetilde {M}$ could be constructed explicitly by a compact induction. Secondly, we construct ‘simple types’ $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$ and prove that each of them is an $\mathfrak {s}$-type of a certain block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$. When $\widetilde {G}$ is either a Kazhdan-Patterson cover or Savin’s cover, the corresponding blocks turn out to be those containing discrete series representations of $\widetilde {G}$. Finally, for a simple type $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$, we describe the related Hecke algebra $\mathcal {H}(\widetilde {G},\widetilde {\lambda })$, which turns out to be not far from an affine Hecke algebra of type A, and is exactly so if $\widetilde {G}$ is one of the two special covers mentioned above.
We leave the construction of a ‘semi-simple type’ related to a general block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ to a future phase of the work.
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, based on the construction of small permutative categories of compact open bisections. This allows us to analyse homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with comparison.
We investigate the structure of circle actions with the Rokhlin property, particularly in relation to equivariant $KK$-theory. Our main results are $\mathbb {T}$-equivariant versions of celebrated results of Kirchberg: any Rokhlin action on a separable, nuclear C*-algebra is $KK^{\mathbb {T}}$-equivalent to a Rokhlin action on a Kirchberg algebra; and two circle actions with the Rokhlin property on a Kirchberg algebra are conjugate if and only if they are $KK^{\mathbb {T}}$-equivalent.
In the presence of the Universal Coefficient Theorem (UCT), $KK^{\mathbb {T}}$-equivalence for Rokhlin actions reduces to isomorphism of a K-theoretical invariant, namely of a canonical pure extension naturally associated with any Rokhlin action, and we provide a complete description of the extensions that arise from actions on nuclear $C^*$-algebras. In contrast with the non-equivariant setting, we exhibit an example showing that an isomorphism between the $K^{\mathbb {T}}$-theories of Rokhlin actions on Kirchberg algebras does not necessarily lift to a $KK^{\mathbb {T}}$-equivalence; this is the first example of its kind, even in the absence of the Rokhlin property.
We consider generalised Dirac-Schrödinger operators, consisting of a self-adjoint elliptic first-order differential operator $\mathcal {D}$ with a skew-adjoint ‘potential’ given by a (suitable) family of unbounded operators. The index of such an operator represents the pairing (Kasparov product) of the K-theory class of the potential with the K-homology class of $\mathcal {D}$. Our main result in this paper is a generalisation of the Callias Theorem: the index of the Dirac-Schrödinger operator can be computed on a suitable compact hypersurface. Our theorem simultaneously generalises (and is inspired by) the well-known result that the spectral flow of a path of relatively compact perturbations depends only on the endpoints.
For an arbitrary ring A, we study the abelianization of the elementary group $\mathit{{\rm E}}_2(A)$. In particular, we show that for a commutative ring A there exists an exact sequence
where ${\rm C}(2,A)$ is the central subgroup of the Steinberg group $\mathit{{\rm St}}(2,A)$ generated by the Steinberg symbols and M is the additive subgroup of A generated by $x(a^2-1)$ and $3(b+1)(c+1)$, with $x\in A, a,b,c \in {A^\times}$.
We realise Buchweitz and Flenner’s semiregularity map (and hence a fortiori Bloch’s semiregularity map) for a smooth variety X as the tangent of a generalised Abel–Jacobi map on the derived moduli stack of perfect complexes on X. The target of this map is an analogue of Deligne cohomology defined in terms of cyclic homology, and Goodwillie’s theorem on nilpotent ideals ensures that it has the desired tangent space (a truncated de Rham complex).
Immediate consequences are the semiregularity conjectures: that the semiregularity maps annihilate all obstructions, and that if X is deformed, semiregularity measures the failure of the Chern character to remain a Hodge class. This gives rise to reduced obstruction theories of the type featuring in the study of reduced Gromov–Witten and Pandharipande–Thomas invariants. We also give generalisations allowing X to be singular, and even a derived stack.
We show that for $\mathrm {C}^*$-algebras with the global Glimm property, the rank of every operator can be realized as the rank of a soft operator, that is, an element whose hereditary sub-$\mathrm {C}^*$-algebra has no nonzero, unital quotients. This implies that the radius of comparison of such a $\mathrm {C}^*$-algebra is determined by the soft part of its Cuntz semigroup.
Under a mild additional assumption, we show that every Cuntz class dominates a (unique) largest soft Cuntz class. This defines a retract from the Cuntz semigroup onto its soft part, and it follows that the covering dimensions of these semigroups differ by at most $1$.
We extend the notion of regular coherence from rings to additive categories and show that well-known consequences of regular coherence for rings also apply to additive categories. For instance, the negative K-groups and all twisted Nil-groups vanish for an additive category, if it is regular coherent. This will be applied to nested sequences of additive categories, motivated by our ongoing project to determine the algebraic K-theory of the Hecke algebra of a reductive p-adic group.
Tachikawa's second conjecture for symmetric algebras is shown to be equivalent to indecomposable symmetric algebras not having any nontrivial stratifying ideals. The conjecture is also shown to be equivalent to the supremum of stratified ratios being less than $1$, when taken over all indecomposable symmetric algebras. An explicit construction provides a series of counterexamples to Tachikawa's second conjecture from each (potentially existing) gendo-symmetric algebra that is a counterexample to Nakayama's conjecture. The results are based on establishing recollements of derived categories and on constructing new series of algebras.
Several authors have studied homomorphisms from first homology groups of modular curves to $K_2(X)$, with $X$ either a cyclotomic ring or a modular curve. These maps send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units. We give a new construction of these maps and a direct proof of their Hecke equivariance, analogous to the construction of Siegel units using the universal elliptic curve. Our main tool is a $1$-cocycle from $\mathrm {GL}_2(\mathbb {Z})$ to the second $K$-group of the function field of a suitable group scheme over $X$, from which the maps of interest arise by specialization.
Clausen a prédit que le groupe des classes d’idèles de Chevalley d’un corps de nombres F apparaît comme le premier K-groupe de la catégorie des F-espaces vectoriels localement compacts. Cela s’est avéré vrai, et se généralise même aux groupes K supérieurs dans un sens approprié. Nous remplaçons F par une $\mathbb {Q}$-algèbre semi-simple, et obtenons le groupe des classes d’idèles noncommutatif de Fröhlich de manière analogue, modulo les éléments de norme réduite une. Même dans le cas du corps de nombres, notre preuve est plus simple que celle existante, et repose sur le théorème de localisation pour des sous-catégories percolées. Enfin, en utilisant la théorie des corps de classes, nous interprétons la loi de réciprocité d’Hilbert (ainsi qu’une variante noncommutative) en termes de nos résultats.
Clausen predicted that Chevalley’s idèle class group of a number field F appears as the first K-group of the category of locally compact F-vector spaces. This has turned out to be true and even generalizes to the higher K-groups in a suitable sense. We replace F by a semisimple $\mathbb {Q}$-algebra and obtain Fröhlich’s noncommutative idèle class group in an analogous fashion, modulo the reduced norm one elements. Even in the number field case, our proof is simpler than the existing one and based on the localization theorem for percolating subcategories. Finally, using class field theory as input, we interpret Hilbert’s reciprocity law (as well as a noncommutative variant) in terms of our results.
We prove that the $p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic $p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant $p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely $p$-divisible. We explain how the existence of these $p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic $p$.
We consider the equivariant Kasparov category associated to an étale groupoid, and by leveraging its triangulated structure we study its localization at the ‘weakly contractible’ objects, extending previous work by R. Meyer and R. Nest. We prove the subcategory of weakly contractible objects is complementary to the localizing subcategory of projective objects, which are defined in terms of ‘compactly induced’ algebras with respect to certain proper subgroupoids related to isotropy. The resulting ‘strong’ Baum–Connes conjecture implies the classical one, and its formulation clarifies several permanence properties and other functorial statements. We present multiple applications, including consequences for the Universal Coefficient Theorem, a generalized ‘going-down’ principle, injectivity results for groupoids that are amenable at infinity, the Baum–Connes conjecture for group bundles, and a result about the invariance of K-groups of twisted groupoid $C^*$-algebras under homotopy of twists.
We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes into account higher semiadditive structure, as enjoyed for example by the $\mathrm {K}(n)$- and $\mathrm {T}(n)$-local categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if $R$ is a ring spectrum of height $\leq n$, then its semiadditive K-theory is of height $\leq n+1$. Under further hypothesis on $R$, which are satisfied for example by the Lubin–Tate spectrum $\mathrm {E}_n$, we show that its semiadditive algebraic K-theory is of height exactly $n+1$. Finally, we connect semiadditive K-theory to $\mathrm {T}(n+1)$-localized K-theory, showing that they coincide for any $p$-invertible ring spectrum and for the completed Johnson–Wilson spectrum $\widehat {\mathrm {E}(n)}$.